Fonctionnalités de *Code_Aster* version 13
Outline

- Version 13 in a nutshell
- Verification & Validation
- Fracture mechanics
- Non-linear constitutive laws
- Linear and non-linear dynamics
- Numerical methods
- Architecture, ergonomics, performances
Version 13 in a nutshell
Version 13 release date

- **June 2016**: Code_Aster available in **Salome-Meca 2016**:
 - v12.6: stable-updates version
 - v13.2: testing version

- **December 2016**: Code_Aster available in standalone form only
 - v12.7: stable-updates version
 - v13.3: testing version

- **June 2017**: Code_Aster available in **Salome-Meca 2017**:
 - v12.8: stable-updates version
 - v13.4: stable version
Verification & Validation
Improvement of V&V

- **Improvement of verification**
 - Adding some test-cases on uncovered features
 - Adding some test-case documentations (about 50)

- **Improvement of validation**
 - Creation of a validation file for structures under seismic loading domain
 - About 40 tests

~83% of source code covered with verification tests
Some deletions for code simplification

- **TEST_TEMPS** operator
- **LIAISON_SOLIDE** in **AFFE_CHAR_MECA_F**
- **POU_C_T** model (curved beam)
- **COQUE_C_PLAN** and **COQUE_D_PLAN** models (lineic shell)
- **GDEF_HYPO_ELAS** (replaced by **GDEF_LOG**)
- **GATT_MONERIE** (elasto-visco-plastic law without hardening for fuel behavior)
- **CALC_THETA** operator
- **G_BILI***, **G_MAX*** and **CALC_K_MAX** options in **CALC_G** operator
- **ASPIC** and **ASCOUF** tools
- Assignments on **NOEUD/GROUP_NO** in **AFFE_MODEL** operator
- **DRUCK_PRAGER_FO** material
- Discrete lagrangian method of contact (**ALGO_*='LAGRANGIEN'**) in **DEFI_CONTACT**
Fracture mechanics
Fracture mechanics

- **Extension of XFEM features**
 - Development of quadratic elements
 - Quadratic elements cut into quadratic elements for integration
 - Coupling THM and XFEM elements
 - Multi-cracking with junction
 - Prescribed flux into fractures

PhD
Fracture mechanics

- Extension of XFEM for thermics
 - Introduction of XFEM in THER_LINEAIRE
 - Use temperature field as an input for mechanical computation

Continuous field of temperature
thermal transient resolved on a non-cracked FEM thermal model

Discontinuous field of temperature
thermal transient resolved on an adiabatic cracked XFEM thermal model
Fracture mechanics

- 3D results (displacement DX at T=20s)
Non-linear constitutive laws
Non-linear constitutive laws

- **New feature of the scalar damage law**
 - Take into account the difference between compression and traction limits
 - Restoration of stiffness when crack reclosing
 - COMPORTEMENT='ENDO_FISS_EXP', MODELE='3D' or '3D_GRAD_VARI'

- **New feature in DEFI_MATER_GC**
 - Concrete material parameters from more physical parameters
 - According to BAEL and now to Eurocode2

- **New feature for non local damage computation in case of mesh refinement**
 - CALC_ENDO operator
 - Chain different steps
 - Read a damage field
 - Continue damage computation
 - Managed multiple degrees of convergence

Experimental crack path

Crack path prediction
Non-linear constitutive laws

- New constitutive law with metallurgical transformations in MFront formulation
 - elastoplastic law with linear isotropic hardening
 - Equivalent to Code_Aster law
 - META_P_IL_PT
 - STAT_NON_LINE/COMPORTEMENT/RELATION = "MetaAcierEPIL_PT"

- Consideration of a pseudo restoration work hardening with mixed hardening
 - During multipass welding simulation, the level of residual welding stresses is overestimated without restoration
 - Results on Satoh test
Non-linear constitutive laws

- Industrialization of the new constitutive law for reinforced concrete structures under cyclic solicitations and seismic loading
 - homogenised constitutive model DHRC
 - COMPORTEMENT='DHRC'

![Diagram of building with energy dissipator](image)

![Graph of acceleration over time](image)
Non-linear constitutive laws

- **MFront**
 - A code generator to simplify the implementations of new material properties, mechanical behaviours and simple material models
 - Allow fast prototyping
 - Better performances
 - Two ways to use
 - Straight forward mode for implemented laws
 - Prototyping mode for user law

- **Upgrade to version 2.0.3**
- **Checking of the validity of constitutive laws parameters depending on temperature, strain**
- **Better management of error messages**

<table>
<thead>
<tr>
<th>éprouvette entaillée 2D axi</th>
<th>MFRONT impl J prog</th>
<th>MFRONT impl J num</th>
<th>MFRONT expl RK4/5</th>
<th>Aster expl J prog</th>
<th>Aster expl J num</th>
<th>Aster expl RK2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb de pas de temps</td>
<td>601</td>
<td>601</td>
<td>4011</td>
<td>601</td>
<td>601</td>
<td>4011</td>
</tr>
<tr>
<td>Nb itérations Newton</td>
<td>1818</td>
<td>1810</td>
<td>17493</td>
<td>2479</td>
<td>1832</td>
<td>17495</td>
</tr>
<tr>
<td>Temps CPU</td>
<td>3mn5s</td>
<td>3mn19s</td>
<td>32mn21s</td>
<td>8mn40s</td>
<td>8mn53s</td>
<td>46mn37s</td>
</tr>
</tbody>
</table>
Linear and non-linear dynamics
Dynamics

- New single operator for linear dynamics
 DYNA_VIBRA
 - Fusion of DYNA_TRAN_MODAL, DYNA_LINE_TRAN and DYNA_LINE_HARM
 - New data structure for sharing time-stepping schemes
 - Homogeneized and compact output message
 - FSI compatible with all time-stepping schemes
 - Improvement of time step storage:
 - upon a list of time step of interest

- Distributed mass on line or surface
 - Ease definition of distributed mass to figure equipment in buildings
Numerical methods
Numerical methods

- New how-to document for discrete elements
 - U2.02.03 How to use discrete elements
 - How to choose
 - Constitutive laws, computation options
 - Post-treatments
 - Application domains
Numerical methods

- New operator for error computation for FEM and XFEM models
 - In energy norm
 - In L2-norm on displacement
 - In L2-norm on contact pressure
 - Usefull for convergence analysis

- New default values for the non-linear solver
 - Paradigm shift!
 - From pedagogic values
 - To values that ease convergence

- New feature for plate
 - Eccentricity for DKTG model
 - \texttt{AFFE_CARA_ELEM/EXCENTREMENT}
Numerical methods

- New method of contact for curved interfaces
 - Local Average Contact method
 - Accurate value on pressure of contact

- New operation to prepare mesh for LAC
 - CREA_MAILLAGE/DECOUPE_LAC

- Improvement of contact pairing in parallel
 - the outer search loop is now distributed across processes
Architecture, ergonomics, performances
Architecture, ergonomics and performances

- **Ergonomics improvement**
 - Visualization on integration points for structural element
 - Post-treatment to prepare data for Salome-Meca
 - IMPR_RESU_SP operator

 - Visualization of generalized forces for structural element
 - IMPR_RESU/CONCEPT/REPERE_LOCAL='ELNO'

- **Refactoring of AFFE_CARA_ELEM**
 - Improvement of checking user’s data
 - Error are raised earlier (syntax checking)
 - Improvement of performance of reading data

- **Output of statistics from STAT_NON_LINE in a table/file**
 - STAT_NON_LINE/TABLE='OUI'
Architecture, ergonomics and performances

- **Performances improvement**
 - Parameters recovery for behavior laws with very large number of parameters
 - Speed-up of 111 on an elementary case
 - Speed-up of 17 on real study

- **Transformation from regular element to Barsoum element**
 - Speed-up of 300 on a big case
 - Negligible cost

- **Field projection on XFEM models (PROJ_CHAMP)**
 - Field on Gauss points on XFEM models
 - Speed-up of 100
Architecture, ergonomics, performances

- **New version of Mumps library 5.0.1**
 - New level of parallelism
 - Activation of threads
 - Another level of improvement
 - Bloc low-rank compression

- **Version of Petsc library 3.6.3**
 - Better integration in Code_Aster
 - Improvement of error recovery from Petsc to Code_Aster

- **New hybride mode of distribution**
 - SOUS_DOMAINE well fitted for linear solver
 - GROUP_ELEM well fitted for elementary computations
 - Results on CALC_CHAMP operator
Thank you for your attention