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Models of behavior THHM 

Summary:

This  note  introduces a  family  of  laws of  behavior  THM for  the  saturated  and unsaturated  mediums.  One
described there the relations allowing to calculate the hydraulic and thermal quantities, by taking account of
strong  couplings  between  these  phenomena  and  also  with  the  mechanical  deformations.  The  relations
presented here can be coupled with any law of mechanical behavior, subject making the assumption known as
of the effective constraints of Bishop and that the mechanical law of behavior defines constant rubber bands
(useful for the coupled terms). The purely mechanical part of the laws is not presented. 
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1 Introduction

We introduce here a family of laws of behavior THM for the saturated and unsaturated mediums. We
describe the relations allowing to calculate the hydraulic and thermal quantities, by taking account of
strong couplings between these phenomena and also with the mechanical deformations. The relations
presented here can be coupled with any law of mechanical behavior, subject making the assumption
known as of  the effective  constraints  of  Bishop and that  the mechanical  law of  behavior  defines
constant rubber bands (useful for the coupled terms). For this reason, the purely mechanical part of
the laws is not presented here. 

Modelings selected are based on the presentation of the porous environments elaborate in particular
by O. Coussy [1]. The relations of behavior are obtained starting from thermodynamic considerations
and with arguments of homogenisation which we do not present here, and who are entirely described
in  the document  of  P. Charles  [2].  In  the same way the general  writing  of  the conservation  and
equilibrium equations is not detailed, and one returns the reader to the documents [R5.03.01] [3] and
[R7.01.10] [4], which contain definitions useful for the comprehension of this document.

The  mechanics  of  the  porous  environments  gathers  a  very  exhaustive  collection  of  physical
phenomena concerning to the solids and the fluids. It makes the assumption of a coupling between the
mechanical evolutions of the solids and the fluids, seen like continuous mediums, with the hydraulic
evolutions, which solve the problems of diffusion of fluids within walls or volumes, and the thermal
evolutions. 

Each component of the porous environment thus has a mechanical, hydraulic and thermal behavior.
The theory tries to gather all these physical phenomena. Chemical phenomena (transformations of the
components, reactions producing of components etc…), just as the radiological phenomena are not
taken into account at this stage of the development of  Code_Aster. The mechanical,  hydraulic and
thermal phenomena are taken into account or not according to the behavior called upon by the user in
the order STAT_NON_LINE, according to the following nomenclature: 

Modeling Phenomena taken into account

KIT_H Hydraulics with an unknown pressure

KIT_HM Mechanics, hydraulics with an unknown pressure

KIT_HHM Mechanics, hydraulics with two unknown pressures

KIT_THH Thermics, hydraulics with two unknown pressures

KIT_THM Thermics, mechanics, hydraulics with an unknown pressure

KIT_THHM Thermics, mechanics, hydraulics with two unknown pressures

The document present describes the laws for the case more the general known as THHM. The simpler
cases are obtained starting from the case general by simply cancelling the quantity absent.
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2 Presentation of the problem: Assumptions, Notations

In this chapter, one mainly endeavours to show the porous environment and his characteristics. 

2.1 Description of the porous environment

The porous environment  considered is  a volume  made up of  a more or  less homogeneous solid
matrix,  more or less coherent (very coherent in the case of the concrete, little in the case of sand).
Between  the  solid  elements,  one  finds  pores.  One  distinguishes  the  closed  pores  which  do  not
exchange  anything  with  their  neighbors  and  the  connected  pores  in  which  the  exchanges  are
numerous.  When one speaks about porosity, it  is well  of  these connected pores about which one
speaks. 

Inside  these pores a  certain  number  of  fluids  are  (one excludes solidification  from  these fluids),
present possibly under several phases (liquid or gas exclusively), and presenting an interface with the
other components. To simplify  the problem and to take into account the relative  importance of  the
physical  phenomena,  the  only  interface  considered  is  that  between  the  liquid  and  the  gas,  the
interfaces solid fluid/being neglected.

2.2 Notations

We suppose that the pores of  the solid are occupied by with more the two components, each one
coexistent in two phases to the maximum, one liquidates and the other gas one. Sizes X  associated

with the phase j  ( j=1,2 ) fluid i  will be noted: X ij . When there are two components besides the
solid, they are a liquid (typically water) and a gas (typically dry air),  knowing that the liquid can be
present in gas form (vapor) in the gas mixture and that the air can be present in form dissolved in
water. When there is one component besides the solid, that can be a liquid or a gas. Thereafter one
will speak about air for the gas component, but it can be a question of any other composing (hydrogen,
CO2  etc).

The porous environment at the current moment is noted  , its border ∂ . It is noted 0 ,∂0  at
the initial moment.

The medium is defined by: 

• parameters (vector position x , time t ),
• variables (displacements, pressures, temperature),
• intrinsic sizes (forced and mass deformations, contributions, heat,  enthali,  flows hydraulic,

thermics…).

The general assumptions carried out are the following ones:

• assumption of small displacements,
• reversible thermodynamic evolutions (not necessarily for mechanics),
• behavior isotropic, isotropic transverse (3D), orthotropic (2D),
• the gases are perfect gases,
• ideal mixture of perfect gases (total pressure = nap of the partial pressures),
• thermodynamic balance between the phases of the same component.

The various notations are clarified hereafter.

2.2.1 Descriptive variables of the medium

These are the variables whose knowledge according to time and of the place make it possible to know
the state of the medium completely. These variables break up into two categories:
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• geometrical variables,
• variables of thermodynamic state.

2.2.1.1 Geometrical variables

In  all  that  follows,  one adopts a  Lagrangian  representation  compared  to  the skeleton  (within  the
meaning of  [1]) and coordinates x = xs  t   are those of a material point attached to the skeleton. All
the space operators of derivation are defined compared to these coordinates. 

Displacements of the skeleton are noted u  x , t =
ux
uy
uz
 .

2.2.1.2 Variables of thermodynamic state

In a general way, the following indices are used: 

w  for liquid water,
ad  for the dissolved air,
as  for the dry air,
vp  for the steam.

The thermodynamic variables are: 

• pressures of the components: pw x ,t  , pad  x ,t  , pvp  x , t  , pas  x , t  ,

• the temperature of the medium:           T x , t  .

These various variables are not completely independent. Indeed, if only one component is considered,
thermodynamic balance between its phases imposes a relation between the steam pressure and the
pressure  of  the  liquid  of  this  component.  Finally,  there  is  only  one  independent  pressure  per
component, just as there is only one conservation equation of the mass. The number of independent
pressures is thus equal to the number of independent components. The choice of these pressures is
free  (combinations  of  the  pressures  of  the  components)  provided  that  the  pressures  chosen,
associated with the temperature, form a system of independent variables. 

For the case known as saturated (only one component air or water) we chose the pressure of  this
single constituting.
For the case says unsaturated (presence of air and water), we chose like independent variables:

• total pressure of gas: p gz x , t  = pvp+ pas ,
• capillary pressure:       pc  x , t =pgz−p lq=pgz−pw−pad .

These pressures have a very strong physical interpretation, the total gas pressure for obvious reasons,
and the capillary pressure, also called suction, because the capillary phenomena are very important in
modeling presented here.  It  would have  been possible  also to choose the steam pressure or  the
percentage of  relative  moisture (relationship between the steam pressure and the steam pressure
saturating at the same temperature) physically accessible. Modeling becomes more complex then and
in  any  event,  capillary  pressure,  gas  pressure  and  percentage  of  relative  moisture  (relationship
between the steam pressure and the saturating steam pressure) HR are connected by the law of
Kelvin.

For the typical case of the behavior known as ‘LIQU_GAZ_ATM‘one makes L’ assumption known as of
Richards: the pores are not saturated by the liquid, but the pressure of gas is supposed to be constant
and the only variable of pressure is the pressure of liquid.
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2.2.1.3 Descriptive fields of the medium

The principal  unknown factors,  which are also the nodal unknown factors (noted  U  x , t   in  this
document) are:

• 2 or 3 (according to the dimension of space) displacements u x x ,t  , uy x ,t  , uzx , t   for
modelings KIT_HM, KIT_HHM, KIT_THM, KIT_THHM,

• the temperature T x , t   for modelings KIT_THH, KIT_THM, KIT_THHM,

• two pressures p1x , t  , p2x , t   (which is  pc x , t  ,  p gz x , t   
in the case studied) for

modelings KIT_HHM, KIT_THH, KIT_THHM,

• a pressure p1x , t   (which is pw x ,t   or p gz x , t   according to whether the medium is
saturated by a liquid or a gas) for modelings KIT_H, KIT_HM, KIT_THM.

2.2.2 Derivative particulate

This paragraph shows the paragraph partly “derived particulate, voluminal and mass densities” of the
document  [R7.01.10].  Description  that  we  make  of  the  medium  is  Lagrangian  compared  to  the
skeleton. 

That is to say a  an unspecified field on  , that is to say xs t   the punctual coordinate attached to

the skeleton that we follow in his movement and is  xfl t   
the punctual coordinate attached to the

fluid. One notes ȧ =
d Sa
dt

 the temporal derivative in the movement of the skeleton: 

ȧ=
d Sa
dt

= lim
 t0

a x t + t  ,t + t −a x  t  , t 
 t

 

ȧ  is called particulate and often noted derivative 
da
dt

. We prefer to use a notation which recalls that

the configuration used to locate a particle is that of the skeleton by report to which a particle of fluid
has a relative speed. For a particle of fluid the location x s  t   is unspecified, i.e. that the particle of

fluid which occupies the position xs  t   
at the moment t  is not the same one as that which occupies

the position 
0 1V   1− =

0 1−
0  1Vs   at another moment  t ' .

2.2.3 Sizes

The equilibrium equations are: 

• conservation of the momentum for mechanics, 
• conservation lots of fluid for hydraulics,
• conservation of energy for thermics.

The writing of these equations is given in the document [R7.01.10] [4], which defines also what we call
in a general way a law of behavior  THM and gives the definitions of the constraints and generalized
deformations.  This  document  uses these definitions.  The equilibrium  equations utilize  directly  the
generalized constraints. 
The generalized constraints are connected to the deformations generalized by the laws of behavior.
The generalized deformations are calculated directly  starting from the variables of  state and their
temporal space gradients. 
The laws of  behaviors  can use additional  quantities,  often arranged in  the internal  variables.  We
gather here under the term of  size at the same time the constraints, the deformations and of  the
additional sizes.
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2.2.3.1 Sizes characteristic of the heterogeneous medium

• Porosity eulérienne:  .

If  one  notes   the  part  of  volume    occupied  by  the  vacuums  in  the  current

configuration, one a: 

 =
 


 

The definition of porosity is thus that of porosity eulérienne.

• Saturation in liquid: S lq
If  one notes  lq the total volume occupied by the liquid, in the current configuration, one
has by definition:

S lq=
 lq


  

This saturation is thus finally a proportion varying between 0 and 1.

• Densities eulériennes of water ρw , dissolved air ρad , dry air ρas , vapor ρvp , gas ρgz .

If  one notes  γw  (resp  ad ,  as ,   vp ) water masses (resp of  dissolved air, dry air  and

vapor) contents in a volume of   skeleton in the current configuration, one has by definition:

 w=∫
w S lqdad=∫

ad S lq d

as=∫
as 1−S lq  d  vp=∫

vp 1−S lqd 
 

The density of the gas mixture is simply the sum of the densities of the dry air and the vapor: 

gz= as+vp  

In the same way for the liquid mixture: 

ρlq= ρw ρad  

One notes ρw
0 , ρad

0 , ρvp
0 , ρas

0  initial values of the densities.

• Lagrangian homogenized density: r .

At the moment running the mass of volume   , M
  , is given by: M


=∫ 0

rd0 .

2.2.3.2 Mechanical magnitudes

• The tensor of the deformations  u   x , t  =
1
2

∇ uT
∇ u   .

One will note V=tr    .

• The tensor of the constraints which are exerted on the porous environment:   .
This tensor breaks up into a tensor of the effective constraints plus a tensor of constraints of
pressure,  = ' p  and  p  are components of the constraints generalized. This cutting
is finally  rather arbitrary, but corresponds all  the same to an assumption rather commonly
allowed, at least for the mediums saturated with liquid.
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2.2.3.3 Hydraulic sizes

• Mass contributions in components mw ,mad ,mvp ,mas  (unit: kilogramme per cubic meter).
They represent the mass of  fluid  brought between the initial  and current  moments.  They
belong to the generalized constraints.

• Hydraulic flows  Mw ,Mad ,Mvp ,Mas  (unit: kilogramme/second/square meter).
One could not give  very well  no more precise definition of  the contributions of  mass and
flows,  considering  that  their  definition  is  summarized to  check  the  equilibrium  equations
hydraulic:

{ṁwṁvpDiv MwMvp=0

ṁasṁad +Div Mas+Mad =0
éq 2.2.3.3 - 1

We nevertheless will specify the physical direction as of these sizes, knowing that what we
write now is already a law of behavior.
Speeds of the components are measured in a fixed reference frame in space and time. 

One notes vw  the speed of water, vad  that of the dissolved air, vvp  that of the vapor, vas

that of the dry air, and vS=
d u
dt

 that of the skeleton. 

The mass contributions are defined by:

mw= ρw 1+ εV S lq - ρw
0


0S lq
0

mad = ρad 1+ εV  S lq- ρad
0


0 S lq
0

mas= ρas 1 + εV  1 - S lq −ρas
0


0  1- S lq
0 

mvp = ρvp 1+ εV  1 - S lq− ρvp
0


0  1- S lq
0 

éq 2.2.3.3 - 2

Mass flows are defined by: 

Mw=w S l  vw−vs 
Mad=ad S l vad−vs
Mas=as 1−S l   vas−vs 
Mvp=vp 1−S l  vvp−vs 

éq 2.2.3.3 - 3

The mass contributions make it possible to define the total density seen compared to the configuration
of reference: 

r = r 0 +mw+mad +mvp +mas éq 2.2.3.3 - 4

where r 0  indicate the density homogenized at the initial moment.
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Other intermediate hydraulic sizes are introduced:

• concentration of the vapor in gas: C vp=
pvp
pgz

,

• gas flow: 
Mgz

gz
=1−C vp 

Mas

as
C vp

Mvp

vp
. This equation specifies that the speed of gas

is obtained by making an average (balanced sum) speeds of various gases according to
their concentration,

• the steam pressure  pvp .

2.2.3.4 Thermal quantities

• not convectée heat Q'  (see further) (unit: Joule),

• mass enthali of the components h ij
m  ( hw

m , had
m , hvp

m , has
m ) (unit: Joule/Kelvin/kilogramme),

• heat flow: q  (unit: J / s /m2 ).

All these sizes belong to the constraints generalized within the meaning of the document [R7.01.10]
[4].

2.2.4 External data

• the mass force Fm  (in practice gravity),

• sources of heat Θ ,
• boundary conditions relating either to variables imposed, or on imposed flows.

3 Constitutive equations

3.1 Conservation equations

It is here only about one recall, the way of establishing them is presented in [R7.01.10] [4].

3.1.1 Mechanical balance

While noting   the tensor of the total mechanical constraints and r  the homogenized density of the
medium, mechanical balance is written:

Div   + rFm =0 éq 3.1.1-1

We point out that r  is connected to the variations of fluid mass by the relation: 

r=r 0 +mw+mad+mvp+mas éq 3.1.1-2
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3.1.2 Conservation of the fluid masses

For the fluid the derivative  ȧ=
d sa
dt

 is in fact a derivative eulérienne and the equations which we

write for the fluid comprise of the terms of transport, even if they can be hidden by the choice of the
unknown factors. The conservation equations of the fluid masses are written then: 

{ṁwṁvpDiv M wM vp =0

ṁasṁad +Div M as+M ad =0
éq 3.1.2-1

3.1.3 Conservation of energy: thermal equation

hw
m ṁw+ had

m ṁad +hvp
m ṁvphas

m ṁas+ Q̇ 'Div hw
mMw + had

m Mad +hvp
mMvp +has

mMas  +Div q  =

Mw +Mad +MvpMas  F
m+

        

éq 3.1.3-1

3.2 Equations of behavior

3.2.1 Evolution of porosity

3.2.1.1 Isotropic case general

d ϕ= (b−ϕ )(d εV−3α0dT +
dpgz−S lq dpc

K s
)

éq 3.2.1-1

In this equation, one sees appearing the coefficients  b  and K s .  b  is the coefficient of Biot and

K s is the module of compressibility of the solid matter constituents. If  K 0  indicate the module of
compressibility “drained” of the porous environment, one has the relation: 

b=1−
K0

K s éq 3.2.1-2

Notice : 

Expression 3.2.1-1 can appear unusual taking into account the standard definition of the coefficient of Biot.
That is due to the fact that we use porosity eulérienne   whereas the usual definition of the coefficient of Biot

is based on the Lagrangian definition   of this quantity.
The two definitions are connected by the relation: 

Φ= (1+εV )ϕ    éq 3.2.1-3

In the case of an isothermal evolution for a saturated medium, the variation of Lagrangian porosity is simply
proportional to  variation of volume: 

d =b .d V    éq 3.2.1-4 

Deferring éq 3.2.1-4 in éq 3.2.1-3, one finds: 

(1+εV ) d ϕ=(b−ϕ ) d εV  

For  εV  small (assumption retained in modelings THM), one obtains d = b− d V , which corresponds

well to [éq 3.2.1-1] for the examined case.
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3.2.1.2 Transverse isotropic case

d = B :d  - d V - 3 dT +
dpgz -S lqdpc

M     éq 3.2.1-5

In this equation, one sees appearing the tensor of  Biot  B , the module of Biot of the solid matrix
1
M 

 and   the differential dilation coefficient. 

The expression of the differential dilation coefficient is given by the relation:




=
B - : 0

3     éq 3.2.1-6

•   the matrix identity,

• B= bLeL⊗eL+eT⊗eT +bN eN⊗eN   the tensor of Biot function of the average 
coefficients of Biot bL  and bN  according to the directions NR and L of the local reference 

mark of orthotropism (L, T, NR). In the isotropic case bL=bN=b ,

• 0= LeL⊗eL +eT⊗eT +N eN⊗eN   the thermal tensor of dilation function of N  

and L  average coefficients of dilation of the porous environments and the solid matter 
constituents according to the directions NR and L of the local reference mark of orthotropism 
(L, T, NR). In the isotropic case L=N=0  . 

Note:

In the isotropic case the expression of the differential dilation coefficient is given by:

                                                     = b -0  

The expression of the module of Biot of the solid matrix is given by the following relation ([11] and
[13]) :

1
M 

= B - : S 0
S :

      éq 3.2.1-7

Note:

In the isotropic case the expression of the module of Biot of the solid matrix is given by:

                                             

1
M 

= 3b - 1−2 S

ES 
                                                    

• S0
S  the matrix of flexibility of the skeleton, function of the Young modulus of the solid matrix

ES  and of the Poisson's ratio of the solid matrix S . By supposing that microscopically the 
skeleton is isotropic homogeneous [12], the form of the matrix of flexibility is given by: 
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S0
S= 

1
ES

- 
S

ES
- 

S

ES
0 0 0

- 
S

ES
1

E S
- 

S

ES
0 0 0

-
S

ES
-
S

ES
1

E S 0 0 0

0 0 0 2
1

S


E S
0 0

0 0 0 0 2
1 S 

E S
0

0 0 0 0 0 2
1S 

ES

                 éq 3.2.1-8

In  practice  it  is  very  difficult  to  have  access  to  the  microscopic  parameters  ES  and  S

characterizing the solid matrix. We can however free us from the knowledge of these two parameters
per deduction of the coefficients of compressibility of the solid matter constituents starting from the
elastic parameters of the porous environment. 

Taking into account what was known as previously, we chose to arbitrarily fix in the programming the
value of S=0,3  (cf. [12]). One adopts then the following approach in order to determine the tensor
of flexibility of the solid matrix:

• it  is supposed that on a microscopic scale, the solid matrix  is homogeneous. Moreover it is
considered that the voluminal deformation of the solid matrix between the initial moment and
the final moment (after mechanical loading) is negligible. Thus the definition of the module of
compressibility of the solid matter constituents is given by: 

                                                                                 K S=
E S

3( 1−2 νS )
 

• expressions components  of  the  tensor  of  Biot,  according  to  the  axes  L  and  N  local
reference mark of orthotropism are data by [12]: 

                                                                        {bL=1−
M 11M 12M 13

3K S

bN=1−
2M 13M 33

3K S

 

with:

                                                              M 11=
E LE N−E LLN

2 

1LTE N−E N LT−2E LLN
2 

 

                                                              M 12=
E L (E N νL T+ E N νLN νL T+ E L νLN

2
)

(1+ νL T)(E N−E N νL T−2 E L νLN
2
)
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                                                                      M 13=
E L E N LN

1LTEN−E N LT−2E LLN
2 

 

                                                                     M 33=
E L

2 1−LT

E N−E NLT−2E L LN
2

 

By  considering  one  or  the  other  of  the  two  expressions  above  (taking  into  account  the
assumption of isotropy carried out on K S  ), we are then able to isolate K S  . 

• starting from the expression of K S  determined previously, one can have access to the Young

modulus ES  solid matrix knowing that: 

                                                                               { νS=0,3

E S=3( 1−2 νS ) K S
                                                  éq

3.2.1-9 

3.2.1.3 Case without mechanical coupling

For purely hydraulic or thermohydraulic modelings without mechanical coupling, it is however possible
to vary porosity via a coefficient of storage Em . This last then connects the variation of porosity to
the variation of pressure of liquid such as:

d =Em.dp lq  

This coefficient is not taken into account in the case of modelings with mechanics (*HM*)

3.2.2 Evolution of the contributions of fluid mass

By using the definition of the contributions of fluid mass and while putting forward purely geometrical
arguments, one finds: 

    

mw=w 1V  S lq−w
0


0S lq
0

mad=ad 1V  S lq−ad
0


0S lq
0

mas=as 1V  1−S lq −as
0


0 1−S lq
0 

mvp=vp 1V  1−S lq−vp
0


0 1−S lq0 

éq 3.2.2-1

Notice     : 
If we use Lagrangian porosity, the contributions mass would be written: 

  

mw=wS lq−w
0


0 S lq
0

mad=ad S lq−ad
0


0S lq
0

mas=as 1−S lq−as
0


0 1−S lq
0 

mvp=vp 1−S lq −vp
0


0 1−S lq
0 

 

As example, we show the first relation in the saturated case S lq=1  (with ρlq= ρw ).

That is to say an elementary field of porous environment of volume  . One notes s  the volume

occupied by the solid matter constituents and  l  the volume occupied by the liquid and gas. One
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notes 
0 ,  

s

0
,  

l

0
same volumes in an initial state. We point out that  εV  note the variation of

volume  of  the  porous  environment  and  we  note  εV s
 voluminal  variation  of  the  solid  matter

constituents.

One has by definition: =
 l



s=− l=  1− = s
0 1Vs  

But   1− =0 1V  1−  .

One from of deduced: 


0 1V   1− =s

0 1Vs   

It is enough to write then s
0
=

0 1−0   to obtain: 


0 1V   1− =

0 1−
0  1Vs   

From where one deduces: 

Vs 1−0 =V  1− −−0   

One uses the eulérienne definition homogenized density r '  (not to be confused with the Lagrangian
definition of the equation [éq 3.1.1-2]): 

r '=s1− lq  

and the definition of the mass contribution in liquid:

r ' =  r0 +mlq 
0

 

One obtains: 

s  1− lq=¿ s
0 1−0 0¿lq

0 00mlq
0

 
that is to say still: 

s slq 1+ eV 0=
s

0s
0

lq

000 +mlq
0

 

Using the conservation of the mass of the solid matter constituents: ss=s
0
 s

0  one obtains finally:

lq 1 + V =
lq

0


0 +mlq  

3.2.3 Laws of behavior of the fluids

3.2.3.1 Liquid

d w
w

=
dpw
K w

−3w dT éq 3.2.3.1 - 1

One sees appearing the module of compressibility of water K w  and its module of dilation w .

3.2.3.2 Gas

For the equations of reaction of gases, one takes the law of perfect gases: 
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pvp
ρvp

=
R

M vp
ol
T

éq 3.2.3.2 - 1

pas
ρas

=
R

M as
ol
T éq 3.2.3.2 - 2

One sees appearing the molar mass of the vapor, M vp
ol  , and that of the dry air, M as

ol .

3.2.4 Evolution of the enthali

3.2.4.1 Liquid enthalpy

dhw
m
=C w

pdT1−3wT 
dpw
w

éq 3.2.4.1 - 1

One sees appearing the specific heat with constant pressure of water: Cw
p . 

By  replacing  in  this  expression  the  pressure of  the  liquid  by  its  value  according  to  the  capillary
pressure and of the pressure of gas, one a: 

dhw
m
=1−3wT 

dpgz−dpc−dpad
w

C w
p dT éq 3.2.4.1 - 2

While noting Cad
p  specific heat with constant pressure of the dissolved air, one a:

dhad
m =Cad

p dT  éq 3.2.4.1 - 3 

3.2.4.2 Enthalpy of gases

dhvp
m
=C vp

p dT éq 3.2.4.2 - 1

dhas
m
=Cas

p dT éq 3.2.4.2 - 2

One sees appearing the specific heat with constant pressure of the dry air Cas
p  and that of the vapor

C vp
p .

3.2.4.3 Contribution of heat except fluids

It is the quantity δQ'  who represents the heat received by the system except contribution enthalpic
of the fluids.

Q' = C 0 :0 :d  T +3lq
mTdpc - 3gz

m + 3lq
m Tdpgz+C 

0dT Éq 3.2.4.3 - 1

One sees appearing several dilation coefficients:  lq
m ,gz

m . Components of the tensor 0  are data

materials.  In  the  isotropic  case,  the  components  of  the  tensor  are  equal   L=N =0  and
correspond at the same time to the dilation coefficients of the porous environment and to those of the
solid matter constituents (which are being inevitably equal in the theory that we present here). 
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One also sees appearing the tensor C0 , corresponding to the matrix of Hooke of the skeleton. This

tensor is function of the mechanical parameters of the porous environment E L , E N ,LT ,LN ,GLN 

in the transverse isotropic case or E , in the isotropic case.

Note:

In the isotropic case the expression of the contribution of heat except fluid is given by:

              Q
' = 3K 00d V T +3 lq

mTdpc - 3gz
m +3lq

m Tdpgz+C 

0dT  

with K 0  the coefficient of compressibility of the porous environment, elastic function of the
parameters of the porous environment E ,  

αlq
m , α gz

m  are given by the relations: 

gz
m = 1-S lq 


 1-S lq 

3T éq 3.2.4.3 - 2

lq
m = S lq

+ lq S lq              éq 3.2.4.3 - 3

One also sees appearing in [éq 3.2.4.3 - 1] the specific heat to constant deformation of the porous

environment  C 

0 ,  which  depends  on  the  specific  heat  to  constant  constraint  of  the  porous

environment C

0
 by the relation: 

C


0 =C


0 -T C 0 :0: 0                                   éq 3.2.4.3 - 4

Note:

In the isotropic case the expression of the specific heat to constant deformation of the porous
environment is given by:

                                                     C 

0 =C


0 - 9T K0 0
2

 

C

0
 is given by a law of mixture: 

C


0 = 1-sC

s + S lqwCw
p + adC ad

p + 1- S lq  vpC vp
p + asC as

p     éq 3.2.4.3 - 5

where C


s
 represent the specific heat to constant constraint of the constituents solid matterS and s

density of the solid matter constituents. For the calculation of s , one neglects the deformation of the

solid matter constituents, one thus confuses s  with its initial value s
0 , which is calculated in fact

starting from the initial specific mass of the porous environment  r 0  by the following formula of the
mixtures: 

 

1-0
s

0 = r0 - w
0 +ad

0 S lq
0 0  - 1-S lq

0 0 vp
0 +as

0           éq 3.2.4.3 - 6

3.2.5 Laws of diffusion (complementary laws)

3.2.5.1 Diffusion of heat

One takes the classical law of Furrier: 
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q= - T .∇ T éq 3.2.5.1 - 1

where one sees appearing the thermal tensor of conductivity T .

The tensor of conductivity is function of porosity, saturation and the temperature and is given in the
shape of the product of three functions plus a constant:

T=


T  .S
T S lq  . T

T T  cte
T

          éq 3.2.5.1 - 2

In the isotropic case, one has  T =T .1 , T
T T =T

T T  .1  and cte
T = cte

T .1 . 

3.2.5.2 Diffusion of the fluids

They are the laws of Darcy, to which one adds the law of Fick in the presence of vapor.
The laws of Darcy are written for gas and the liquid: 

Mlq

lq
=

lq

H - ∇ plq+lqF
m          éq 3.2.5.2 - 1

Mgz

gz
=

gz

H -∇ pgz+ gzF
m          éq 3.2.5.2 - 2

where we see appearing the tensors of hydraulic conductivity  
lq

H
 and 

gz

H
 for the liquid and gas

respectively. In the isotropic cases, 
lq

H =
lq

H .1  and  
gz

H =
gz

H .1 .

One makes the approximation that 
Mw

w
= w

H −∇ plqlqF
m  .

Note:

In this expression of the law of Darcy, one neglects the differential acceleration of water. In the case of
very permeable and very porous mediums subjected to a seismic loading, that can constitute a limit.

The diffusion in the gas mixture is given by the law of Fick thanks to the relation:

Mvp

vp
−
Mas

as
=−

Dvp

C vp1−C vp 
∇  pvppgz  éq 3.2.5.2 - 3

where Dvp is the coefficient of diffusion of Fick of the gas mixture (L2. T-1), one notes thereafter F vp

such as:

F vp=
D vp

Cvp 1−C vp 
éq 3.2.5.2 - 4

and with
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C vp =
pvp
pgz

éq 3.2.5.2 - 5

One thus has:

Mvp

vp
−
Mas

as
=−F vp∇C vp éq 3.2.5.2 - 6

Moreover, one a: 

Mgz

gz
=1−C vp 

Mas

as
C vp

Mvp

vp
éq 3.2.5.2 - 7

and:

gz=vp+as éq 3.2.5.2 - 8

For the diffusion of the liquid mixture, the usual writing is the following one:

Mad−Mw=−Dad∇ad éq 3.2.5.2 - 9

where  Dad  is  the  coefficient  of  diffusion  of  Fick  of  the  liquid  mixture.  In  order  to  keep  a

homogeneous writing with that of the gas mixture one notes thereafter F ad such as:

F ad =Dad éq 3.2.5.2 - 10

And concentration Cad  corresponds here to  density of the dissolved air:

Cad =ad éq 3.2.5.2 - 11

Mad−Mw=−F ad∇Cad éq 3.2.5.2 - 12

Concerning the liquid, it was admitted that the liquid law of Darcy applies at the speed of liquid water.
There is not thus to define mean velocity of the liquid. 

 
Mw

w
= lq

H −∇ plqlqF
m  éq 3.2.5.2 - 13

and:

lq=w+ad éq 3.2.5.2 - 14

By combining these relations, one finds then: 
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Mas

as
= gz

H  -∇ p gz+gz F
m +CvpF vp∇C vp éq 3.2.5.2 - 15

Mvp

vp
= 

gz

H -∇ p gz+ gzF
m - 1-C vp F vp∇C vp éq 3.2.5.2 - 16

Mw

w
= lq

H  - ∇ plq +lqF
m  éq 3.2.5.2 - 17

Mad =ad lq
H -∇ plq+ lqF

m -F ad ∇C ad éq 3.2.5.2 - 18

Tensors of   hydraulic  conductivities   lq
H  and  

gz

H
 are not directly  data and their  value is known

starting from the formulas: 

 lq
H =
K int   . k lq

rel  S lq 
w T 

éq 3.2.5.2 - 19


gz

H =
K int   .k gz

rel S lq , p gz 
 gz T 

éq 3.2.5.2 - 20

K int  is the tensor of intrinsic permeability, characteristic of the porous environment and user datum,

unspecified function of porosity. In the isotropic case, K int =K int .1 ;

w  is the dynamic viscosity of water, characteristic of water and user datum, unspecified function of
the temperature;

gz  is the dynamic viscosity of gas, characteristic of gas and user datum, unspecified function of the
temperature;

k lq
rel  is the relative  permeability  with the liquid, characteristic of the porous environment and user

datum, unspecified function of saturation in liquid;

k gz
rel  is the permeability  relating to gas, characteristic  of  the porous environment and user datum,

unspecified function of saturation in liquid and gas pressure.

Note:

Here definite hydraulic conductivities are not inevitably very familiar for the mechanics of
grounds,  which  usually  use  for  the  saturated  mediums  the  permeability  k  ,  which  is
homogeneous at a speed. 

The relation between the tensors k  and  lq
H  is as follows:  lq

H =
k

w g
 where g  is the

acceleration of gravity. 

The  coefficient  of  diffusion  of  Fick  of  the  gas  mixture  F vp  is  a  characteristic  of  the  porous
environment,  unspecified user datum function of  the steam pressure, gas pressure, saturation and
temperature which  one  will  write  like  a  product  of  function  of  each  one  of  these  variables:

F vp P vp , Pgz ,T , S   = f vp
vp
 P vp . f vp

gz
P gz . f vp

T
T  . f vp

S
S   one  will  neglect  the  derivative

compared to steam pressure and saturation. Same manner for the coefficient of diffusion of Fick of the

liquid  medium:  F ad  Pad , P lq ,T , S = f ad
ad
Pad . f ad

lq
P lq . f ad

T
T . f ad

S
S  ,  one  takes  into

account only the derivative according to the temperature.
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3.2.6 Water-steam balance

This relation is essential and it results in to reduce it  many unknown factors of pressure.

One notes hw
m  mass enthalpy of water, sw

m  its entropy and g w
m
=hw

m
−Tsw

m  its free enthalpy.

One notes hvp
m  mass enthalpy of the vapor, svp

m  its entropy and g vp
m
=hvp

m
−Tsvp

m  its free enthalpy.

Balance water vapor is written: 

g vp
m = g w

m éq 3.2.6-1

Who gives: 

hvp
m
−hw

m
=T  svp

m
−sw

m  éq 3.2.6-2

In addition, the definition of the free enthalpy teaches us that:  dg =
dp

−sdT , which, applied to the

vapor and water, compound with the relation dg
vp

m = dg
w

m
 and while using [éq 3.2.6-2] gives: 

dpvp
vp

=
dpw
w

 hvp
m
−hw

m  dT
T

éq 3.2.6-3

This relation can be expressed according to the capillary pressure and of the gas pressure: 

dpvp=
vp

w
 dpgz−dpc−dpad vp  hvp

m
−hw

m dT
T

éq 3.2.6-4

3.2.7 Balance air dissolved dryness-air

The dissolved air is defined via the constant of Henry K H , which connects the molar concentration

of dissolved air Cad
ol  ( moles /m3 ) with the air pressure dryness:

        Cad
ol =

pas
K H

éq 3.2.7-1

with Cad
ol =

ad

M ad
ol éq 3.2.7-2

Molar mass of the dissolved air, M ad
ol  is logically the same one as that of the dry air M as

ol . For the

dissolved air, one takes the law of perfect gas:

pad
ρad

=
R

M as
ol
T éq 3.2.7-3

The dissolved air pressure is thus connected to that of dry air by:

pad =
pas
K H

RT éq 3.2.7-4
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3.2.8 The mechanical behavior

One will write it in differential form: 

d  =d  'd  p éq 3.2.8-1

In the case general (except law ‘HYDR_TABBAL'), EN using a formulation of Bishop [10] extended to
the unsaturated mediums one writes:

d σ p= -B(dpgz - S lq dpc ) éq 3.2.8-2

(which corresponds well in the case saturated to the classical formulation with Biot d σ p= -B dp lq ).

One thus sees appearing in the formula [éq 3.2.8-2], the tensor of Biot. In the isotropic case B= b.1
and σ p=σ p .1 .
This formulation is valid for “reasonable” ranges of drying, namely of the relative humidities (or degree
of hygroscopy) HR understood between 50 % and 100 %. It is pointed out that the relative humidity
HR and the capillary pressure are connected by the law of Kelvin (cf section 3.3).
For ranges of humidities relative going down to the lower part from 50 %, the model resulting from the
thesis of Ginger El Tabbal [14] is recommended. This model is called by keyword HYDR_TABBAL under
RELATION_KIT. Besides the capillary action used in the formulation above, the effect of adsorption is

taken here into account.  In this case, the hydraulic constraint is written in the form  d σ p= -B d π
hasvec:

d π=dpgz−S BJH dpc−
1
3
pc (S BJH )dS BJH

+
2
3
(A0/ φ

0
)(−(ωBJH (S BJH )dt(HR)+t (HR)d ωBJH (S BJH )) .dpc−( ∂ γ∂ εs )|μdωBJH (S BJH ))

éq 3.2.8-3

With S BJH ,  A0 ,  ωBJH ,  t (HR) and ( ∂ γ∂ ε s )|μ  data input of the model calculated as a preliminary.

One gives the definition here of it:
S BJH  Voluminal  fraction  of  liquid  water  function  of  HR  (not  adsorbed  water).  This  function  is

calculated by method BJH [16].
A0  Entire surface of the pores (or surfaces specific materials) by unit of volume m ² /m3. It is the

product of the density dries (g/m3) material by the specific surface (m ² /g) determined by  method
Study Bureau [17] or  BJH [16].
ωBJH  Surface fraction of the unsaturated pores Foiling of relative humidity HR. It is the relationship

between the surface of the unsaturated pores (by unit of volume) determined by the method BJH (with
a given relative moisture) and the entire surface of the pores A0 .

t (HR)  Thickness of the layer of adsorbed water. This thickness is evaluated by an empirical relation
known as of Badmann [15] . 

( ∂ γ∂ ε s )|μ Term  of  Shuttleworth,  strongly  depend  on  directedTion  and  of  the  morphology  of  solid

surface. This term is readjusted with to start from experiment of withdrawal of drying.

 S BJH , A0 , ωBJH , are thus calculated starting from experimental data by said digital methods Study
Bureau or BJH. Methodology to obtain these parameters as well as the thickness of the adsorbed layer
and the parameter of Shuttleworth is described in detail in Doc. U2.04.05. 
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In the relation [éq 3.2.8-1] evolution of the tensor of effective constraint  
'
 is supposed to depend

only on the displacement of  the skeleton and internal variables   .  The usual terms related to the
thermal deformation are integrated into the calculation of the effective constraint:

d  '= f d −0dT I , d   éq 3.2.8-4

The reason of this choice is to be able to use any law of classical thermomechanics for the calculation
of the effective constraints, laws which, in more the share of the writings are in conformity with [éq
3.2.8-3].
In practice, Lhas thermal deformation is evaluated by the following formula: 

ε
th (T )=α0 (T−T ini )  (1)

The temperature of reference is given by THM_INIT/TEMP in DEFI_MATERIAU . 

3.2.9 Precise details on the diphasic terms of transfers

3.2.9.1 The isotherm of sorption

To close  the  system,  there  remains  still  a  relation  to  be  written,  connecting  saturation  and  the
pressures. We chose to consider that saturation in liquid was an unspecified function of the capillary
pressure, that this function was a characteristic of the porous environment and provided in data by the
user.

Since the user can provide a function very well S lq  pc  refine per pieces, and since the derivative of

this function, 
∂ S lq
∂ pc

 , plays an essential physical role, we chose to require of the user to also provide

this curve,  remainder with its load to make sure of the coherence of the data thus specified. There
exists  however  for  the user  the  possibility  of  calling  on an analytical  model  of  saturation  and its
derivative  coded  “into  hard”  in  the  source:  the  model  of  Mualem-Van Genuchten  (see  following
section).

It is noticed that in the approach present, one speaks about a bi-univocal relation between saturation
and capillary pressure. It is known that for most porous environments, it is not the same relation which
must be used for the ways of drying and the ways of hydration. It is one of the limits of the approach
present.

3.2.9.2 The model Mualem - Van Genuchten

Concerning the hydraulic  behavior,  the user currently  has two choices: to return manually, and in
tabulée form, relative permeabilities, laws of saturation and their derivative while making sure of their
coherence (keyword HYDR_UTIL or  HYDR_TABBAL under RELATION_KIT), that is to say to make
call  to a model  known and programmed in  analytical  form:  the model  Mualem – Van Genuchten
(keyword HYDR_VGM or HYDR_VGC under RELATION_KIT). 
  
Note: 

There exists  of  course of other classical  models to describe  the hydraulic behavior (Brook
Corey for example) but it is currently not available in Aster. It is then to the user to return them in
form tabulée in the command file. The model Mualem- Van Genuchten is a classical model for
the description of typical argillaceous materials of the problems of storage under ground. For the
permeability relating to gas,  it  is current  to use either a version Van Genuchten,  or a cubic
version.

The model Mualem-Van Genuchten results in a law capillary saturation/pressure (Van Genuchten to
which one adds a pressure of entry) such as:
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S we=
1

[1+( Pc−PeP r )
n

]
m

 

with  Swe=
S−S wr
1−S wr

 and m=1−
1
n

n , Swr (residual water saturation) and P r are parameters of the models indicated by the user in his

command file. P e is also a parameter (by default taken equal to 0) correspondent with a pressure of
entry (the medium désature only if the capillary pressure is higher than this pressure.

The permeability relating to water is expressed then by integrating the model of prediction proposed by
Mualem (1976) in the model of capillarity of Van Genuchten:

k r
w
= S we 1−1−S we1/m 

m
2

 

The permeability to gas is formulated in a similar way in the case of the model  HYDR_VGM :

k r
gz
= 1−Swe  1−S we1/m 

2 m
 

or by a simple cubic law in the case of it HYDR_VGC :

 k r
gz
=1−S 

3
 

In Code_hasster, we make a digital processing of this model in the “limiting”  zones ( S=1  or S=0 ).
For that we use two additional parameters corresponding to a treatment which one carries out on these
curves, Smax  and CSAT :

For  SSmax , these curves are interpolated by a polynomial of degree 2  C1  in  Smax , so as to
avoid having to treat derivative of infinite values. Indeed, for S=1  :

∂ kr
w
 S 

∂S
=∞  

and for the case HYDR_VGM 
∂ kr

gz
S 

∂ S
=∞

To avoid having then to deal with this problem (which does not have a priori  physical meaning) one
replaces these functions starting from a saturation Smax  by a polynomial of the second order C1  in
this point.

What gives for the function k r
w
 S   :

For S=Smax , the polynomial is determined PLS   such as:

{
PL S max = k r

w
 Smax 

P L'  S max =
∂ k r

w

∂ S
 S max 

   and   PL1=0

 

For SSmax , k r
w
 S  is replaced by PLS  .

And for k r
gz
S   in the case HYDR_VGM :

For S=Smax , the polynomial is determined PG S   such as:
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{
PG  S max = kr

gz
S max 

PG'  Smax =
∂ k r

gz

∂ S
S max 

   and   PG 0 =1

For SSmax , k r
gz
S   is replaced by PG S  .

For suction  S Pc  and for  PcPcmin  (with  S Pcmin=Smax )  the curve  is prolonged  S Pc  by a

hyperbole such as the curve is C1  in this point: 

For SSmax  :

S  Pc =1−
A

B−Pc
 

with A  and B  such that the curve is C1  in Smax . 

There is thus well a decreasing curve which tends towards 1 when Pc  tends towards −∞ . This treatment
enables us to manage negative  capillary pressures (in these zones there the terms of  capillary pressure is
abusive, it acts implicitly of a change of variable making it possible to deal with a quasi-saturated problem). 

S Pc  is then multiplied by a coefficient “of security” CSAT  so that the saturation never reaches 1 (problem
which one cannot treat). One advises to take a value of CSAT  very near to 1 (0.999999 for example).

3.2.10 Summary of the characteristics of material and the user data

• drained Young moduli E L  and E N  as well as the drained Poisson's ratios LT

and  LN  who allow the calculation of  the matrix  of  flexibility  of  the porous environment.
(transverse isotropic case),

• the drained Young modulus E , and the drained Poisson's ratio   who allow the calculation
of the matrix of flexibility of the porous environment. (isotropic case),

• average coefficients of Biot bL  and bN  who allow the calculation of the module of Biot of

the solid matrix 
1
M 

 (transverse isotropic case),

• the coefficient of Biot  b= 1-
K0

K S

 allows to calculate the module of compressibility of the

solid matter constituents K S , useful in the calculation of porosity for the isotropic case,

• the module of compressibility of water K w ,

• the dilation coefficient of water w ,

• the constant of perfect gases R ,

• molar mass of the vapor M vp
ol ,

• molar mass of the dry air M as
ol , (= M ad

ol )

• specific heat with constant pressure of water Cw
p ,

• specific heat with constant pressure of the dissolved air Cad
p

• specific heat with constant pressure of the dry air Cas
p ,

• specific heat with constant pressure of the vapor C vp
p ,

• average dilation coefficients of the porous environment L  and N , which is also those of

the solid matter constituents. They allow the calculation of   (transverse isotropic case),

• the dilation coefficient of the porous environment 0 , which is also that of the solid matter

constituents. It allows the calculation of  = b -0  (isotropic case),
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• specific heat with constant constraint of the solid matter constituents C

s
,

• the thermal  tensor of  conductivity  of  the solid  matter  constituents only,   s
T ,  unspecified

function of the temperature,

• the thermal tensor of conductivity of the liquid,  lq
T , unspecified function of the temperature,

• the  thermal  tensor  of  conductivity  of  the  dry  air,  as
T ,  unspecified  function  of  the

temperature,
• the coefficient  of  diffusion of  Fick  for  the gas mixture,  F vp ,  unspecified  function  of  the

temperature, the gas pressure, the steam pressure and saturation
• the coefficient of diffusion of Fick for the liquid mixture,  F ad , unspecified function of the

temperature and the pressure of liquid, the pressure of the dissolved air and saturation.
• The constant of Henry K H  unspecified function of the temperature,

• the intrinsic tensor of permeability, K int , unspecified function of porosity,

• the dynamic viscosity of water, w , unspecified function of the temperature,

• the dynamic viscosity of gas, gz , unspecified function of the temperature,

• the permeability relating to the liquid, k lq
rel , unspecified function of saturation in liquid,

• the permeability relating to gas, k gz
rel , fonunspecified ction of saturation in liquid and the gas

pressure,
• the  relation  capillary  saturation/pressure,   S lq  pc ,  unspecified  function  of  the  capillary

pressure,
• in a general way the initial state is characterized by: 

• the initial temperature,

• initial pressures from where initial saturation is deduced S
lq

0  pc
0  ,

• initial specific mass of water w
0 ,

• initial porosity φ
0 , 

• initial  pressure of the vapor  pvp
0  from where one deduces the initial  density from the

vapor vp
0 , 

• initial pressure of the dry air  pas
0  from where one deduces the initial  density from the

dry air as
0 .

• homogenized initial density porous environment r 0 , 

• initial enthali of water, the dissolved air, the vapor and the dry air. 

3.3 The state of reference and the initial state
The introduction of the initial conditions is very important, in particular for the enthali. 
In practice, one can reason by considering that one has three states for the fluids: 

• the state running,
• the state of reference: it is that of the fluids in a free state. Very often one will take for the

pressures of  water  and air  the atmospheric  pressure.  In this state  of  reference,  one can
consider that the enthali are worthless,

• the initial state: it is important to note that, in an initial state of the porous environment, water
is in a hygroscopic state different from that of free water. For the enthali of water and vapor
one will have to take: 
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init hw
m
=
pw
init
− pl

ref

w
=
pw
init
−patm
w

init hvp
m
=LT init = chaleur latente de vaporisation

init has
m
=0

init had
m
=0

 

Note:

The initial vapor pressure must be taken in coherence with  other data. Very often, one
leaves  the  knowledge of  an  initial  state  of  hygroscopy. The  relative  humidity  is  the
relationship  between  the  steam  pressure  and  the  steam  pressure  saturating  at the
temperature considered. One then uses the law of Kelvin which gives the pressure of the
liquid according to the steam pressure,  of  the temperature and the saturating steam

pressure:
pw−pw

ref

w
=
R

M vp
ol T ln pvp

pvp
sat
T   .  This  relation  is  valid  only  for  isothermal

evolutions.  It  is  stressed  that  pw
ref  corresponds  in  a  state  of  ‘balance  to  which

corresponds  pvp
sat , this state of balance corresponds in fact to  pw

0 = pgz
0 = 1 atm. For

evolutions  with  temperature  variation,  knowing  a  law  giving  the  steam  pressure
saturating  to  the  temperature  T 0 ,  for  example:

pvp
sat
T 0 =10

 2 .7858
T 0−273 .5

31. 559.1354 T0− 273.5   , and a degree of hygroscopy HR , one from

of deduced the steam pressure thanks to pvp T 0=HR pvp
sat
T 0 .

 

3.4 Nodal unknown factors, initial values and values of reference
 

We approach here a point  which is due more  to choices of  programming  than to true aspects of
formulation.  Nevertheless,  we  expose  it  because  it  has  important  practical  consequences.  The
principal unknown factors which are also the values of the degrees of freedom, are noted: 

 

{u }
ddl

={
ux
u y
uz

PRE1ddl

PRE 2ddl

T ddl
}

 

According to modeling, they can have different meanings: 
 

LIQU_SATU LIQU_VAPE LIQU_GAZ_ATM GAS LIQU_VAPE_GAZ
PRE1 pw  pw  pc=−pw  p gz  pc=pgz−pw  
PRE2 p gz  

 
LIQU_GAZ LIQU_AD_GAZ_VAPE LIQU_AD_GAZ

PRE1 pc=pgz−pw  pc=pgz−pw− pad  pc=pgz−pw− pad  
PRE2 p gz  p gz  p gz  

One will then define the real pressures and the real temperature by: 
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p = pddl + pinit  for the pressures PRE1 and PRE2 and T =T ddl+T init  for the temperatures, where

p init and T init  are defined under the keyword THM_INIT order DEFI_MATERIAU.

Values written by  IMPR_RESU are the values of  {u }
ddl .  The boundary conditions are defined for

{u }
ddl .  The keyword  DEPL keyword factor  ETAT_INIT order  STAT_NON_LINE defines the initial

values of {u }
ddl . Initial values of the enthali, which belong to the generalized constraints are defined

starting  from  the  keyword  SIGM keyword  factor  ETAT_INIT order  STAT_NON_LINE.  The  real
pressures and the real temperature are used in the laws of behavior, in particular the laws of the type

S lq= f  pc   or 
dp
p

=
d 


dT
T

. The initial values of the densities of the vapor and the dry air are

defined starting from the initial values of the vapor and gas pressures (values read under the keyword
THM_INIT order  DEFI_MATERIAU).  It  is  noticed  that,  for  displacements,  the  decomposition

u =uddl + uinit  is not made: the keyword  THM_INIT order  DEFI_MATERIAU thus does not allow to
define initial displacements. The only way of initializing displacements is thus to give them an initial
value by the keyword factor ETAT_INIT order STAT_NON_LINE.

3.5 Effective constraints and total constraints. Boundary conditions of
contrainteLa  partition  of  the  constraints  in  constraints  total  and
effective is written:

 = ' + p  

  is the total constraint, c.a.d that which checks: Div   + r Fm=0

'  is  the  effective  constraint.  For  the  laws  of  effective  constraints,  it  checks:

d  ' = f  d  -0dT ,  , where  =1/2∇ u + T
∇ u  and   represent the internal variables. The

tensor  p  is calculated according to the water pressures. The adopted writing is incremental and, if it

is wanted that the value of  p  that is to say coherent with the value p init  defined under the keyword

THM_INIT, it is necessary to initialize the components of   p  by the keyword SIGM keyword factor

ETAT_INIT order STAT_NON_LINE.

In the files results, one finds the constraints effective  
'  under the names of components SIXX …

and   p  under the name  SIPXX  …  .  The boundary conditions in constraints are written in total
constraints. 

3.6 Some digital values
We give here some reasonable values for certain coefficients. These values are not programmed in
Code_Aster, they are provided here as an indication:

For perfect gases, one retains the following values:

R=8 . 3144 J .K−1  

M vp
ol
=18. 10-3 kg .mole−1  

M as
ol
=28 . 9610-3 kg .mole−1  

For CO2, the value of the constant of Henry with 20 °C  is of:

K H = 3162 Pa .m3mole−1  

For liquid water, one a:
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w=1000 kg /m3  

K w= 2000 MPa  

The thermal dilation coefficient of water is correctly approached by the formula:

w=9 .52 10-5 ln T - 273 −2.19 10- 4 ( K -1 )

The heat-storage capacities have as values:

C

s
=800 J.kg−1K−1

C lq
p
=4180 J.kg−1K−1

C vp
p
=1870 J.kg−1K−1

Cas
p
=1000 J.kg−1K−1

 

To a law of evolution of the latent heat of liquid phase shift vapor is also given:
L T =2500800−2443 T−273.15  J /kg  

 

4 Calculation of the generalized constraints

In this chapter, we specify how are integrated the relations described into chapter 3. More precisely
still,  we give  the expressions of  the constraints  generalized  within  the meaning of  the document
[R7.01.10] [4] when laws of behaviors THM are called for the option RAPH_MECA within the meaning of
the document [R5.03.01]  [3]. So that this document follows of readier the order of programming, we
will consider two cases: the case without dissolved air and that with.

The generalized constraints are: 

 ' , p ;mw
,M

w
, hw

m ;m
vp
,Mvp ,hvp

m ;m
as
,M

as
,has

m ;mad ,Mad , had
m ;Q ' ,q  

The generalized deformations, from which the generalized constraints are calculated are:

u ,  u  ; pc ,∇ pc ; p gz ,∇ pgz ;T ,∇ T  

The internal variables that we retained are: 

In the case without vapor:

 ,w ,S lq  
In the case with vapor and without dissolved air:

 ,w , pvp , S lq  
In the case with dissolved vapor and air:

 ,w , pvp , pad , S lq  

In  this  chapter,  we  adopt  the  usual  notations  Aster,  namely  the  indices  +  for  the  values  of  the
quantities at the end of the step of time and the indices - for the quantities at the beginning of the step
of time.

 

Thus, the known quantities are: 
  

• generalized constraints, deformations and  internal variables at the beginning of the step of
time: 

•  '  - , p
- ;mw

- ,Mw
- , hw

m -

;mvp
- ,Mvp

- ,hvp
m -

;mas
- ,Mas

- , has
m-

;mad
- ,Mad

- ,had
m -

;Q '- ,q-  

• u - ,  u-  ; pc
- ,∇ pc

- ; pgz
 - ,∇ pgz

- ;T - ,∇ T -  

• 
- ,w

- , pvp
- , pad

-  
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• deformations generalized at the end of the step of time: 

• u+ ,  u+ ; pc
+ ,∇ pc

+ ; pgz
+ ,∇ p gz

+ ;T + ,∇T +  

• The unknown quantities are the constraints, and  internal variables at the end of the step of
time: 

•  ' + , p
+ ;mw

+ ,Mw
+ , hw

m+

;mvp
+ ,Mvp

+ ,hvp
m+

;mas
+ ,Mas

+ , has
m+

;mad
+ ,Mad

+ ,had
m+

;Q ' + ,q+  

• 
+ ,w

+ , pvp
+ , pad

+  

4.1 Case without dissolved air

4.1.1 Calculation of porosity and it density of the fluid

4.1.1.1 Calculation of porosity: isotropic case

The  first  thing  to  be  made  is  of  course  to  calculate  saturation  at  the  end  of  the  step  of  time

S lq
+ = S lq ( pc

+ ) . Porosity is by integrating on the step of time the equation [éq 3.2.1-1].

One obtains then: 

ln {b -+

b -- }={-v+ -v
- +30 T

+ -T --
 p gz

+ - pgz
- -S lq

+  pc
+ - pc

- 

K S
} éq 4.1.1-1

4.1.1.2 Calculation of porosity: transverse isotropic case

The  first  thing  to  be  made  is  of  course  to  calculate  saturation  at  the  end  of  the  step  of  time

S lq
+ = S lq  pc

+  . Porosity is by integrating on the step of time the equation [éq 3.2.1-3]. Integration is

thus here explicit contrary to the isotropic case.
One obtains then: 

   + - -=B : + -  -- - v
+- v

- -3 T
+ -T -+

 pgz
+ - pgz

- -S lq
+  pc

+ - pc
- 

M 

         éq 4.1.1-2

4.1.1.3 Calculation of the density of the fluid

The density of the liquid is by integrating on the step of time the equation [éq 3.2.3.1 - 1].

What gives: 

ln w
+

w
-  =

pgz
+ - pgz

- - pc
+ + pc

-

K w

-3w T + -T - éq 4.1.1-3

 

4.1.2 Calculation of the dilation coefficients

It is important to notice that the thermal dilation coefficient differential is recomputed starting from the

porosity evaluated at the end of the step of time. Taking into account that one poses:


+ =

B -+  :0
3                                                        éq 4.1.2-1
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Note:

In the isotropic case [éq 4.1.2-1] becomes:

                                                    

+ = b -+0  

It is then about a simple application of the formulas [éq 3.2.4.3 - 2] and [éq 3.2.4.3 - 3], which are

evaluated at the end of the step of time: 

vp
m

+

=as
m

+

=gz
m

+

= 1 -S lq
+ 

+ +
+ 1-S lq

+ 

3T +
                   éq 4.1.2-2

                    w
m+

= S lq
+


+ +lq
+S lq

+         éq 4.1.2-3 

4.1.3 Calculation of the fluid enthali

The fluid  enthali  are  calculated  by integration  of  the equations [éq 3.2.4.1  -  1],  [éq 3.2.4.2  -  1],
[éq 3.2.4.2 - 2].

hw
m+

=hw
m-

Cw
p T +−T -

1−3w T
+ 

w
+  pgz

+ − pgz
- − pc

+ + pc
-  éq 4.1.3-1

hvp
m+

=hvp
m-

+C vp
p T + -T - éq 4.1.3-2

has
m+

=has
m-

+Cas
p T + -T - éq 4.1.3-3

4.1.4 Air and steam pressures

On the basis of  the relation [éq 3.2.6-4] in which one carries the law of  reaction of  perfect  gases

[éq 3.2.3.2 - 1], one finds  
dpvp
pvp

=
M vp

ol

RT  1
w
dp gz−

1
w
dpchvpm−hwm 

dT
T   

that one integrates by a

way initially into constant temperature (one then considers the density of constant water), then of T -

with T +  with constant pressures. 

ln pvp
+

pvp
- =M vp

ol

RT +
1

w
+ [  pgz+− pgz - − pc+−pc

-  ]
M vp

ol

R
∫T -

T +

 hvp
m
−hw

m 
dT

T 2  

 
The first term corresponds to the way at constant temperature, the second with the way with constant
pressures. By using the definitions [éq 3.2.4.1 - 1] and [éq 3.2.4.2 - 1] of the enthali, one sees that for
an evolution with constant pressures:

hvp
m
−hw

m

T 2 =
hvp
m-

−hw
m-

T 2 
C vp

p
−C w

p  T−T -
T 2

 

One thus has for such a way:

 ∫T -

T +

 hvp
m
−hw

m  dT
T 2 = hvpm

-

−hw
m-

  1

T -−
1

T +  + C vp
p
−C w

p   ln T
+

T - T - 1

T +−
1

T -    
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That is to say finally: 

ln pvp
+

pvp
- =M vp

ol

RT +
1

w
+ [  pgz+− pgz- − pc+−pc

-  ] +

M vp
ol

R
 hvpm

-

−hw
m-

 1T -
−

1

T +  +
M vp

ol

R
C vp

p
−C w

p   lnT
+

T - T
-

T +
−1

éq 4.1.4-1

One can then calculate the densities of  the vapor and the air by the relations [éq 3.2.3.2 - 1] and
[éq 3.2.3.2 - 2]:

   

vp
+ =

M vp
ol

R

pvp
+

T +
éq 4.1.4-2

as
+ =

M as
ol

R
 pgz


−pvp

 
T

éq 4.1.4-3

4.1.5 Calculation of the mass contributions

The  equations  [éq  3.2.2-1]  give  worthless  mass  contributions  to moment  0.  One  writes  in  an
incremental way the equations [éq 3.2.2-1]: 

mw
+ =mw

 - +w
+ 1+ V

+ + S lq
+ -w

- 1 +V
-   - S lq

- 

mas
+ =mas

- + as
+ 1+ V

+ + 1- S lq
+  -as

-  1+ V
− - 1- S lq

- 

mvp
+ =mvp

- +vp
+ 1+ V

+ +
1- S lq

+
-vp

- 1V
-  -

1-S lq
-


éq 4.1.5-1

4.1.6 Calculation of the heat-storage capacity and Q' heat

There are now all the elements to apply at the end of the step of time the formula [éq 3.2.4.3 - 5]:

C


0+

=1 -+
sC 

s + S lq
+


+
w

+C w
p +1 -S lq

+


+  vp
+ C vp

p +as
+ Cas

p             éq 4.1.6-1

One uses of course [éq 3.2.4.3 - 4] who gives: 

C


0 + =C


0+ -T + C 0 : 0:0                                éq 4.1.6-2

Note:

In the isotropic case [éq 4.1.6-2] becomes:

                                              C 

0 + =C


0+ - 9T +K 00
2

 

Although variation of heat Q'  is not a total differential, it is nevertheless licit to integrate it on the
step of time and one obtains while integrating [éq 3.2.4.3 - 1].
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Q ' + =Q ' - + C 0 :0 : 
+ -  - T

1
2 +3 lq

m+

T
1

2  pc+ - p
c

- - 3gz
m+

3lq
m +

T
1

2  p
gz

+ - p
gz

- C 

0+

T + -T - 
éq 4.1.6-3

where  we  noted:  T
1

2 = 
T + +T -

2
.  We  chose  here  a  formula  of  “point  medium”  for  Lvariable

temperature has.

Note:

In the isotropic case [éq 4.1.6-3] becomes:

Q ' + =Q ' - + 3K 00  V
+ - V

- T
1

2+ 3lq
m+

T
1

2  pc+ - p
c

-  - 3gz
m+

3lq
m  +

T
1

2  p
gz

+- p
gz

- C 

0+

T + -T - 
 

4.1.7 Calculation of the mechanical constraints

The calculation of the effective constraints is done by calling upon the incremental laws of mechanics
chosen by the user. One integrates on the step of time [éq 3.2.8-2] and one a: 

  

 p
+ = p

- -B  pgz
+ - p gz

- +B S lq
+  pc

+ - pc
-              éq 4.1.7-1

In the isotropic case one has  B=b .1  ,  p
+ = p

+ .1  and  p
- = p

- .1

4.1.8 Calculation of hydrous and thermal flows

It is of course necessary to calculate all the coefficients of diffusion: 

The coefficient of Fick F + =F T + , pc
+ , pgz

+   

The thermal tensor of diffusivity T += 


T +  .S
T  S lq

  . T
T T +  cte

T

Tensors of permeability and hydraulic conductivity:

 lq
H
+

=
K int + . kw

rel S lq
+ 

 w T
+ 

 gz
H

+

=
K int + . k gz

rel S lq
+ , p gz

+ 
gz T

+ 

In the isotropic case, K int =K int .1 , T =T .1 , T
T T =T

T T  .1  and cte
T = cte

T .1  

Vapor concentrations: Cvp
+ =

pvp
 +

pvp
+

It  does not remain any more whereas to apply the formulas [éq 3.2.5.1 - 1],  [éq 3.2.5.2 - 15], [éq
3.2.5.2 - 16] and [éq 3.2.5.2 - 17] to find:
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q+= - T
+

∇ T +
éq 4.1.8-1

Mas
+

as
+

= gz
H

+

[ -∇ p gz
+ + 

as

+ +vp
+ Fm]+C vp

+ F vp
+ ∇Cvp

+
éq 4.1.8-2

Mvp
+

vp
 +

=  gz
H
+

[-∇ pgz
+ + as+ +vp

+ Fm]- 1-C vp
+ F vp

+ ∇C vp
+

éq 4.1.8-3

Mw
+

w
+

= lq
H
+

[-∇ plq
+ + w

+ F m ]                          éq 4.1.8-4

In the isotropic cases, 
lq

H =
lq

H .1  and  
gz

H =
gz

H .1 .

4.2 Case with dissolved air

4.2.1 Calculation of porosity 

4.2.1.1 Calculation of porosity: isotropic case

Same manner, the first  thing to be made is to calculate saturation at the end of  the step of  time

S lq
 + =S lq ( pc

+ ) .  Porosity is by integrating on the step of  time the equation [éq 3.2.1-1].  It  is thus

pointed out that:

                           ln {b -+

b -- }={-v+ -v
- +30 T

+ -T --
 p gz

+ - pgz
- -S lq

+  pc
+ - pc

- 

K S
}  

4.2.1.2 Calculation of porosity: transverse isotropic case

Same manner, the first  thing to be made is to calculate saturation at the end of  the step of  time

S lq
 + =S lq  pc

+  .  Porosity is by integrating on the step of  time the equation [éq 3.2.1-1].  It  is thus

pointed out that:

                       + - -=B : + -  -- - v
+- v

- -3T
+ -T -+

 pgz
+ - pgz

- -S lq
+  pc

+ - pc
- 

M 

 

 

4.2.2 Calculation of the dilation coefficients

Same manner, the thermal  dilation coefficient  differential  is recomputed starting from the porosity

evaluated at the end of the step of time. Taking into account that one poses:

 


+ =

B -+  :0
3                                                        éq 4.2.2-1

Note:

In the isotropic case [éq 4.2.2-1] becomes:
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                                                        

+ = b -+0  

It is then about a simple application of the formulas [éq 3.2.4.3 - 2] and [éq 3.2.4.3 - 3], which are

evaluated at the end of the step of time: 

vp
m

+

=aas
m+ = a gz

m + = 1-S lq
+ 

+ +
+ 1- Slq

+ 
3T+

                     éq 4.2.2-2

                                         w
m+

= S lq
+


+ +lq
+S lq

+                      éq

4.2.2-3

ad
m

+

= S lq
+ 

+ +
+ S lq

+

3T+
                     éq 4.2.2-4

4.2.3 Calculation of density and dissolved and dry air, steam pressures
  

On the basis of  the relation [éq 3.2.6-4] in which one carries the law of  reaction of  perfect  gases
[éq 3.2.3.2 - 1], one finds:

dpvp
pvp

=
M vp

ol

RT  1
w
dpw  +  hvpm−hwm 

dT
T  éq 4.2.3-1

Contrary to the case without dissolved air pw  is not now known any more:

pw= plq− pad=pgz−pc−
RT
K H

pas= pgz− pc−
RT
K H

 pgz−pvp   

thus:

dpw=dpgz−dpc−
RT
K H

dpgz−dpvp −
R
K H

 pgz− pvp dT éq 4.2.3-2

One  integrates  [éq  4.2.3.1]  while  including  there  [éq  4.2.3.2]  by  a  way  initially  into  constant
temperature (one then considers the density of constant water), then of  T -  with  T +  with constant
pressures. With final one obtains:

ln pvp
+

pvp
- =M vp

ol

w
- 

1

RT +
−

1
K H

  pgz+− pgz
-  +

M vp
ol

w
 - K H

 pvp+−pvp
- −

M vp
ol

w
- RT +

 pc+− pc
-  +

M vp
ol R

w
- K H

 pvp+− pgz
+  lnT

+

T -  +
M vp

ol

R
∫T -

T +

 hvp
m  −hw

m 
dT

T 2

éq 4.2.3-3

Contrary to the preceding case, there is here a nonlinear equation to solve. One will make for that a

method of type corrector-predictor. One poses pvp  such as: 
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ln pvppvp- =M vp
ol

w
- 

1

RT +
−

1
K H

  pgz+− pgz
- −

M vp
ol

w
- RT +

 pc+−pc
- 

+
M vp

ol

R
∫T -

T +

 hvpm−hwm 
dT

T 2

éq 4.2.3-4

and thus

pvp=pvp
- . exp M vp

ol


w

- 
1

RT +
−

1
K H

  pgz+− pgz
- −

M vp
ol


w

-RT +
 pc+−pc

- ∫T - 

T +

 hvp
m
−hw

m 
dT

T 2          éq 4.2.3-5

Moreover, as in the section [§4.1.4], one recalls that:

∫T -

T +

 hvp
m -hw

m  dT
T 2 =  hvpm

-

-hw
m-

  1

T - -
1

T +  + C vp
p -Cw

p   ln T
+

T -  +T - 1

T + -
1

T -   

Like ln  pvp
+

pvp
-  =ln  pvppvp-  + ln  pvp

+

pvp   and that by D.L ln  pvp
+

pvp =ln  1
pvp

+
− pvp
pvp ≈ pvp

+

pvp
−1 ,

pvp
  will thus be given by the following linear expression:

pvp
+

pvp
=1

M vp
ol

w
- K H

 pvp+ −pvp- 
M vp

ol R

w
- K H

 pvp+ − pgz-  ln T
+

T -  éq 4.2.3-6

from where

pvp
+
=
 w- K H−M vp

ol  pvp-
 pgz

- R ln T
+

T -  
 w

- K H

pvp
−M vp

ol 1R ln T
+

T -   
éq 4.2.3-7

From there the other pressures are calculated easily:

pas
+
=p gz

+
−pvp

 +  

pad
+ =

pas
+

K H

RT +  

pw
+
= pgz

+
− pc

+
− pad

 +  

 
One  can  then  calculate  the  densities  of  the  vapor  and  the  air  by  the  relations  [éq 3.2.3.2  -  1],
[éq 3.2.3.2 - 2] and [éq 3.2.7-3]:
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vp
+ =

M vp
ol

R

pvp
+

T +
éq 4.2.3-8

as
+ =

M as
ol

R
 pgz

+
−pvp

+ 
T +

éq 4.2.3-9

ad
+ =

pad
+ M as

ol

RT +
éq 4.2.3-10

The density of water is by integrating on the step of time the equation [éq 3.2.3.1 - 1].

What gives: 

ln w
+

w
- = pgz

+
−pgz

-
−pc

+
pc

-
−pad

+
 pad

-

K w

−3w T +
−T -  éq 4.2.3-11

4.2.4 Calculation of the fluid enthali

The fluid  enthali  are  calculated  by integration  of  the equations [éq 3.2.4.1  -  1],  [éq 3.2.4.1  -  3],
[éq 3.2.4.2 - 1], [éq 3.2.4.2 - 2].

hw
m+

=hw
m -

C w
p T +−T -

 1−3wT
+

w
+  p gz

+ −pgz
- −pc

+ + pc
-  −pad

+ + pad
-  éq 4.2.4-1

had
m+

=had
m-

Cad
p T  +−T - éq 4.2.4-2

hvp
m+

=hvp
m-

C vp
p T +

−T -  éq 4.2.4-3

has
m+

=has
m-

C as
p T +

−T -  éq 4.2.4-4

4.2.5 Calculation of the mass contributions

The  equations  [éq  3.2.2-1]  give  worthless  mass  contributions  to moment  0.  One  writes  in  an
incremental way the equations [éq 3.2.2-1]: 

mw
+ =mw

- +w
+ 1+ V

+ + S lq
+ -w

- 1+V
- - S lq

 - 

mad
+ =mad

- +ad
+  1+V

+ + S lq
+ - ρad

- 1 +V
- - S lq

- 

mas
 + =mas

- +as
+  1+ V

+ +
1- S lq

+
-as

- 1+ V
-  -

1- S lq
-


mvp
+ =mvp

- +vp
+ 1 +V

+ +
1- S lq

+
-vp

-  1+V
- -

1-S lq
- 


éq 4.2.5-1

4.2.6 Calculation of the heat-storage capacity and Q' heat
There are now all the elements to apply at the end of the step of time the formula [éq 3.2.4.3 - 5]:
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C

0+

= 1-+
sC

s + S lq
+


+
 w

+ C w
p +ad

+ Cad
p
+ 1-S lq

+


+ vp
+ C vp

p + as
+ Cas

p  éq 4.2.6-1

One uses of course [éq 3.2.4.3 - 4] who gives: 

C


0 + =C


0+ -T + C 0 : 0:0 éq 4.2.6-2

Note:

In the isotropic case [éq 4.2.6-2] becomes:

                                           C 

0 + =C


0+ - 9T +K 00
2

 

Although variation of heat Q'  is not a total differential, it is nevertheless licit to integrate it on the
step of time and one obtains while integrating [éq 3.2.4.3 - 1].

Q ' + =Q ' - + C 0 :0 : 
+ -  - T

1
2 +3 lq

m+

T
1

2  pc+ - p
c

- - 3gz
m+

3lq
m +

T
1

2  p
gz

+ - p
gz

- C 

0+

T + -T - 
 

 éq 4.2.6-3 

where  we  noted:  T
1

2 =
T ++T -

2
.  We chose  here  a  formula  of  “point  medium”  for  the  variable

temperature.

Note:

In the isotropic case [éq 4.2.6-3] becomes:

Q ' + =Q ' - + 3K 00  V
+ - V

- T
1

2+ 3lq
m+

T
1

2  pc+ - p
c

-  - 3gz
m+

3lq
m  +

T
1

2  p
gz

+- p
gz

- C 

0+

T + -T - 
 

4.2.7 Calculation of the mechanical constraints

The calculation of the effective constraints is done by calling upon the incremental laws of mechanics
chosen by the user. One integrates on the step of time [éq 3.2.8-2] and one a: 

 p
+ = p

- -B  pgz
+ - p gz

- +B S lq
+  pc

+ - pc
-                  éq 4.2.7-1

In the isotropic case one has  B=b .1  ,  p
+ = p

+ .1  and  p
- = p

- .1

4.2.8 Calculation of hydrous and thermal flows
It is of course necessary to calculate all the coefficients of diffusion: 

 

Coefficients of Fick F vp
+  Pvp

+ , P gz
+ ,T + , S +  and F ad

+ Pad
+ , P lq

+ , T + , S + 

The thermal tensor of diffusivity T + =


T + .S
T  S lq

+ .T
T T + + cte

T
 

Tensors of permeability and hydraulic conductivity: 

 lq
H +

=
K int


+
 .k w

rel S lq
+ 

w T + 
 gz
H +

=
K int + . k gz

rel S lq+ , p gz

+ 
gz T + 
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In the isotropic case, K int =K int .1 , T =T .1 , T
T T =T

T T  .1  and cte
T = cte

T .1 . 

 

Concentrations out of vapor and dissolved air: C vp
+ =

pvp
 +

pgz
+

 and Cad
+ = ad

+

It  does not remain any more whereas to apply the formulas [éq 3.2.5.1 - 1],  [éq 3.2.5.2 - 15], [éq
3.2.5.2 - 16], [éq 3.2.5.2 - 17] and [éq 3.2.5.2 - 18] to find:

q+= - T
+

∇T +
éq 4.2.8-1

M as
+

as
+

= gz
H

+

[ -∇ p
gz

+ + 
as

+ +
vp

+  F m]+C vp
+ F vp

+ ∇C vp
+

éq 4.2.8-2

Mvp
+

vp
+

=  gz
H
+

[-∇ p
gz

+ + 
as

+ + 
vp

+ Fm ]- 1-C vp
+ F vp

+ ∇C vp
+

éq 4.2.8-3

Mw
+

w
+

= lq
H
+

[- ∇ plq
+ + w

+ + ad
+ Fm ]                      éq 4.2.8-4

Mad
+ =ad

+  lq
H [- ∇ plq+ w

+ + ad
+ Fm] -F ad

+ ∇C ad
+ éq 4.2.8-5

In the isotropic cases, 
lq

H =
lq

H .1  and  
gz

H =
gz

H .1

  

5 Calculation of the derivative of the generalized constraints

In this chapter, we give the expressions of the derivative of the constraints generalized compared to
the deformations generalized within the meaning of the document [R7.01.10] [4], i.e. the terms which
are calculated when the laws of behaviors THM are called for the option RIGI_MECA_TANG within the
meaning of the document [R5.03.01] [3].
In order not to weigh down the talk,  we give  the expression of  the differentials of  the generalized
constraints, knowing that the derivative partial result some directly. 

5.1 Derived from the constraints
The  calculation  of  the  differential  of  the  effective  constraints  is  left  with  the  load  of  the  purely
mechanical law of behavior, which we do not describe in this document. Differential of the constraint

 p  is given directly by the expression [éq 3.2.8-2].

5.2 Derived from the mass contributions
While differentiating [éq 3.2.2-1], one a:
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dmw

w
=
d w
w

1+ V S lq+d VS lq+ 1+ V  d S lq+ 1+V dS lq

dmad

ad
=
d ad
ad

1+ V  S lq+d V S lq+  1+ V  d S lq+  1+V  dS lq

dmas

as
=
d as
as

1+ V  1- S lq  + d V 1-S lq  +  1+V  d 1- S lq  - 1+ V  dS lq

dmvp

vp
=
d vp
vp

1+V  1- S lq + d V 1- S lq  + 1+ V  d  1- S lq - 1+V dS lq

            éq 5.2-1

5.2.1 Case without dissolved air

By taking account of [éq 3.2.1-1] and of [éq 3.2.3.1 - 1], [éq 3.2.3.2 - 1], [éq 3.2.3.2 - 2] and while
supposing 1+ V≈1  

one finds: 

dmw

w
=S lq B :d  +∂S lq

∂ Pc
-
S lq
K w

-
S lq

2

M

dpc+ S lqKw

+1
M


 dpgz- 3w

mdT

dmvp

vp
= 1-S lq B:d  + - ∂S lq

∂ Pc
-
1-S lq S lq
M 

 dpc+  1-S lq 

M 
dpgz +1-S lq

dpvp
pvp

- 3vp
m dT

dmas
as

= 1-S lqB :d  + - ∂S lq
∂P c

-
1- S lq Slq
M 

dpc + 1- S lq

M 
dpgz+1-S lq 

dpas
pas

- 3as
m dT }

éq 5.2.1-1

One sees appearing the derivative of saturation in liquid compared to the capillary pressure, quantity
which plays a crucial role.

The expression [éq 3.2.6-4] of the differential of the steam pressure also makes it possible to calculate
the air pressure dryness: 

dpas= 1-
M vp

ol p vp
RT w  dpgz+ M vp

ol pvp
RT w

dpc-
M vp

ol pvp
RT

hvp
m -hw

m  dT
T

éq 5.2.1-2

One defers [éq 5.2.1-2] and [éq 3.2.6-4] in [éq 5.2.1-1] and one finds:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is
provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Modèles de comportement THHM Date : 04/11/2021 Page : 42/62
Responsable : GRANET Sylvie Clé : R7.01.11 Révision  :

3731397193c7

dmw

w
= S lqB :d  + ∂S lq

∂ Pc
-
S lq

K w

-
Slq

2

M

dp c+ S lq K w

+
1
M


 dpgz- 3w

mdT     éq 5.2.1-3

dmvp

vp
= 1- S lqB :d  + - ∂S lq

∂ pc
-
1-S lqS lq
M



-
1- Slq
pvp

vp

lq dp c
+  1-S lq

M 

-
1-S lq

pvp

vp

lq dpgz
+ -3vp

m +
vp1- Slq hvp

m -hlq
m


pvpT dT
     éq 5.2.1-4

dmas

as
= 1-S lqB :d  + - ∂S lq

∂ pc
-
1- S lq S lq
M



-
1-S lq
pas

vp

lq dpc
+  1-S lq

M


-
1-S lq

pas

lq -vp
lq  dpgz + - 3as

m +
vp1- S lqhvp

m -hlq
m

pasT dT
        éq 5.2.1-5

5.2.2 Case with dissolved air

As previously, by taking account  of  [éq 3.2.1-1]  and of  [éq 3.2.3.1  -  1],  [éq 3.2.3.2  -  1],  [éq 3.2.3.2  -  2],
[éq 3.2.7.3] and while supposing 1V≈1  

one finds:

 

dmw

w
=bSlq d V + SlqK w

∂ pw
∂Pc

-
S lq2b -

K s

+
∂ S lq
∂ Pc dpc+S lq Kw

∂ pw
∂Pgz

+
b -

K s
dpgz+

 SlqK w

∂ pw
∂T

-3w
mdT

    éq 5.2.2-1

dmad

ad
=bS lq d V S lqM as

ol

ad K H

∂ pas
∂ P c

−
S lq2b− 

K s


∂ S lq
∂P c  dpc

S lqM as
ol

ad K H

∂ pas
∂ Pgz


b−

K s  dpgzS lqM as
ol

ad K H

∂ pas
∂T

−30b− dT
        éq 5.2.2-2

dmvp

vp
=b 1- S lqd V +  -∂ S lq

∂ Pc
-
1 - S lq S lq b -

K s

-
1 -S lq

pvp

vp

lq  dpc+

 b -1- S lq
K s

+
1 - S lq 

pvp

vp

lq  dpgz+ -3vp
m +

vp 1 - S lq hvp
m - hlq

m


pvpT  dT
      éq 5.2.2-3
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dmas

as
=b1−S lq d V−

∂ S lq
∂P c

−
1−S lq S lqb -

K s


1−S lq 

pas

vp

lq  dpc
 b−1−S lq

K s


1−S lq 

pas

lq−vp

lq  dpgz+ −3 vp
m
−
vp1−S lqhvp

m
−h lq

m


pasT  dT
   éq 5.2.2-4

The derivative partial are given in [§ Annexe 3].

5.3 Derived from the enthali and Q' heat

There still, we do nothing but point out expressions already provided to chapter 2:

5.3.1 Case without dissolved air

dhw
m
=1−3wT 

dpgz−dpc
w

C w
p dT  

dhvp
m =C vp

p dT  

dhas
m =Cas

p dT  

 Q'=30K 0Td V3lq
mTdpc−3gz

m
3lq

m  TdpgzC 

0dT  

5.3.2 Case with dissolved air

As previously, by taking account of [éq 3.2.1-1] and of [éq 3.2.3.1 - 1], [éq 3.2.3.2 - 1], [éq  3.2.3.2 - 2],
[éq 3.2.7.3] and while supposing 1V≈1  

one finds: 
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dmw

w
=S lq B:d  +  S lqK w

∂ pw
∂Pc

-
S lq

2

M


+
∂S lq
∂ Pc dpc+ S lq



K w

∂ pw
∂ Pgz

+
1
M


dpgz+

S lqK w

∂ pw
∂T

- 3w
mdT

    éq 5.2.2-1

dmad

ad
=S lq B :d  + S lqM as

ol

ad K H

∂ p as
∂Pc

-
S lq

2

M


+
∂S lq
∂P c

dpc +S lq M as
ol

ad K H

∂ pas
∂ P gz

+1
M


dpgz

+ S lqM as
ol

ad K H

∂ pas
∂T

- 3dT
    éq 5.2.2-2

dmvp

vp
= 1-S lq B :d  + -∂ Slq

∂ Pc
-
 1-S lq S lq
M



-
1-S lq
pvp

vp

lq  dpc+ 
1-S lq
M



+
1-S lq
pvp

vp

lq  dpgz+
+ -3vp

m +
vp 1-S lq hvp

m -hlq
m 

pvpT dT
 

éq 5.2.2-3

dmas

as
= 1-S lq B :d  + -∂S lq

∂ Pc
-
1-S lq S lq
M



+
1- Slq 
pas

vp

lq dp c+

1-S lq

M


+
1-S lq

pas

lq -vp
lq dpgz+ -3vp

m -
vp 1-S lqhvp

m -hlq
m 

pasT dT
éq 5.2.2-4

The derivative partial are given in [§Annexe 3].

5.4 Derived from the enthali and Q' heat

There still, we do nothing but point out expressions already provided to chapter 2:

5.4.1 Case without dissolved air

dhw
m= 1 -3wT 

dpgz - dpc
w

+Cw
p dT  

dhvp
m =C vp

p dT  

dhas
m =Cas

p dT  

 Q ' = C0 :0 :d  T + 3lq
m Tdpc - 3gz

m + 3lq
m Tdpgz+C 

0 dT  

5.4.2 Case with dissolved air

dhw
m= 1- 3wT 

dpgz-dpc -dpad
w

+C w
p dT

= 1- 3wT

w [1-
∂ pad
∂ pgz  dpgz -1 +

∂ pad
∂ pc dpc]+ Cw

p -
1- 3wT

w

∂ pad
∂T dT
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dhad
m =Cad

p dT  

dhvp
m  =C vp

p dT  

dhas
m =Cas

p dT  

Q ' = C0 :0 :d  T + 3lq
m Tdpc - 3gz

m + 3lq
m Tdpgz+C 

0 dT  

5.5 Derived from the heat flow

One leaves [éq 3.2.5.1 - 1] and [éq 3.2.5.1 - 2].

While differentiating [éq 3.2.5.1 - 2] and while using [éq 3.2.1-1], one finds:

 

d T = 


T '  .S
T  S lq . T

T T  . B :d 

+
 1
M




T '   .S

T  S lq . T
T T  dpgz

+ 
T   .S

T '  S lq . T
T T  .

∂S lq
∂ pc

- S lq
 1
M




T '   .S

T  S lq . T
T T  dpc

+ 

T
  .S

T
S lq  . T

T ' T  - 3

T '   .S
T
 S lq . T

T
T  dT

 

That is to say finally: 

dq= -


T '   .S
T  S lq . T

T T  . B:d  .∇ T

-
 1
M




T '   .S

T  S lq . T
T T  .∇ T dpgz

-
T   .S

T '  S lq . T
T T  .

∂S lq
∂ pc

- S lq
 1
M




T '   .S

T  S lq . T
T T  .∇ T dp c

- 

T
  .S

T
S lq  . T

T ' T - 3

T '   .S
T
 S lq . T

T
T  .∇ T dT

éq 5.4-1

5.6 Derived from hydrous flows

It  is of  course necessary to set out again of  the equations [éq 3.2.5.2 - 15],  [éq 3.2.5.2 - 16],  [éq
3.2.5.2 - 17] and [éq 3.2.5.2 - 18] which one differentiates.

5.6.1 Case without dissolved air

dMas=Mas

as
+as gz

H .Fmd as+ Mas -asC vpF vp∇C vp . [ lq
H ]-1d  gz

H

+ as gz
H -d ∇ p gz+d vpF

m 

+ asCvp ∂F vp

∂T
dT +

∂ F vp

∂ p gz
p gz∇C vp+ asdC vp F vp∇C vp+ asC vpF vpd ∇ Cvp

éq 5.5.1-1
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dMvp=Mvp

vp
+vp gz

H .F md vp+ Mvp+ vp 1-Cvp F vp∇ C vp .[  gz
H ]-1. d  gz

H

+ vp gz
H -d ∇ pgz+ d asF

m 

-1-Cvp vp ∂F vp

∂T
dT +

∂ F vp

∂ pgz
p gz∇ Cvp + vp dC vpF vp∇ Cvp -vp 1-C vp F vp d∇ Cvp

       éq 5.5.1-2

dMw= Mw

w
+w lq

H .F md w+ [ lq
H ]-1 .Mw . d  lq

H

-w lq
H  d∇ p gz -d∇ pc 

           éq 5.5.1-3

In order to clarify these differentials completely, it is necessary to know the differentials of the densities

of the fluids, as well as the differentials of  C vp =
pvp
pgz

 and of its gradient. Knowing [éq 3.2.6-4], one

can then calculate the differential of the air pressure dryness: 

dpas= dpgz -dpvp =
w -vp
w

dpgz +
vp

w
dp c -vp hvp

m -hw
m  dTT                       éq 5.5.1-4

By deriving the relation from perfect gases one a: 
d as
as

=
dpas
pas

- dT
T

 and 
d vp
vp

=
dpvp
pvp

- dT
T

, which,

while using [éq 3.2.6-4] and [éq 5.5.1-4] gives: 

d vp=
vp

2

w pvp
dpgz -

vp
2

w pvp
dpc + vp

2 hvp
m -hw

m 
Tpvp

-
vp
T dT éq 5.5.1-5

d as=
as
pas

w -vp
w

dpgz+
as
pas

vp

w
dp c+ - asvp hvp

m -hw
m

Tpas
-
as
T  dT éq 5.5.1-6

[éq 3.2.6-4] allows to express the gradient of the steam pressure: 

∇ p vp=
vp

lq
∇ p gz -∇ pc+ vphvp

m -hlq
m 

∇ T
T

     éq 5.5.1-7

While differentiating [éq 5.5.1-7] one finds:
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d ∇ pvp=
vp
w

d ∇ pgz -d ∇ pc  + d vpw
-
vp

w 2

d w ∇ pgz - ∇ pc  +vp hvp
m -hw

m

T d ∇ T

+ d vp hvp
m -hw

m

T ∇ T
  

éq 5.5.1-8

The last term of [éq 5.5.1-8] is written: 

d vp hvp
m -hw

m

T ∇ T =  hvp
m -hw

m

T ∇ Td vp+
vp
T

∇ T dhvpm -dhw
m -vp hvpm -hw

m∇ T dT
T 2

    éq 5.5.1-9

Knowing the differentials of  its gradient and steam pressure, the expressions of  the differentials of
Cvp  and of its gradient are easy to calculate: 

dC vp =
dpvp
p gz

-
pvp
p gz

2
dpgz  who gives: ∇ C vp=

∇ pvp
pgz

-
pvp
p gz

2
∇ pgz  and that one differentiates in: 

 d ∇C vp= d [∇ pvp
p gz

-
pvp
pgz

2
∇ p gz ]= d∇ pvp

p gz
-
∇ p gz
pgz

2
dpvp+ 2 pvpp gz3

∇ pgz -
∇ pvp
pgz

2 dpgz - pvppgz2
d ∇ pgz  

 
dpvp  is given by [éq 3.2.6-4] and d ∇ pvp  by [éq 5.5.1-8].

5.6.2 Case with dissolved air

dMas= Mas

as
+as gz

H .F md as+ Mas -asC vpF vp∇C vp .[ gz
H ]-1 .d  gz

H

+ as gz
H -d ∇ p gz+d vpF

m 

+ asCvp ∂F vp

∂T
dT +

∂ F vp

∂ p gz
dpgz∇ Cvp +asdC vpF vp∇ Cvp +asCvpF vp d ∇C vp

   éq 5.5.2-1

dMvp = Mvp

vp
+vp gz

H .F md vp+ Mvp+ vp 1-C vp F vp∇C vp . [ gz
H ]-1 . d  gz

H

+ vp gz
H -d ∇ pgz+ d asF

m 

-1-Cvp vp ∂F vp

∂T
dT +

∂ F vp

∂ pgz
dpgz∇C vp+ vpdC vpF vp∇ C vp -vp1-C vp F vp d ∇C vp

  éq 5.5.2-2

dMw= Mw

w
+ w lq

H . Fmd w+Mw .[  lq
H
]
-1 . d  lq

H +w lq
H -d ∇ plq+d ad F

m      éq 5.5.2-3
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dMad = - lq
H .∇ plq+ lq lq

H . Fm d ad + ad - lq
H .∇ plq+lqF

m   .d  lq
H

+ ad  lq
H . -d ∇ plq+ d wF

m 

-∂F ad

∂T
dT +

∂ F ad

∂ pc
dpc∇C ad -F ad d ∇C ad

         éq 5.5.2-4

It  is necessary to know the differentials of the densities of the fluids, as well as the differentials of

C vp =
pvp
pgz

 ,
 
Cad = ad and of  their  gradient.  One first  of  all  will  calculate  the differentials  of  the

densities by using the derivative partial of pressures given in [§Annexe 3]. 

By deriving the relation from perfect gases one a:  
d as
as

=
dpas
pas

-
dT
T

 and 
d vp
vp

=
dpvp
pvp

-
dT
T

, that

one can express in the form:

d as=
as
pas 

∂ pas
∂ pc

dp c+
∂ pas
∂ pgz

dpgz+  aspas
∂ pas
∂T

-
as
T  dT                     éq 5.5.2-5

d vp=
vp
pvp 

∂ pvp
∂ pc

dpc+
∂ pvp
∂ p gz

dpgz+  vppvp
∂ p vp
∂T

-
vp
T  dT                     éq 5.5.2-6

By using the relation [éq 3.2.3.1 - 1], one obtains:

d w=
w
K w

∂ pw∂ pc
dpc+

∂ pw
∂ p gz

dpgz+  wK w

∂ pw
∂T

- 3wwdT                      éq 5.5.2-7

And like d ad =
M as

ol

K H

dpas , 

d ad =
M as

ol

K H 
∂ pas
∂ pc

dpc +
∂ pas
∂ p gz

dpgz+
∂ pas
∂T

dT            éq 5.5.2-8

As previously, the expressions are used

dC vp =
dpvp
p gz

-
pvp
p
gz

2

dpgz  who gives 

dC vp =
1
pgz 

∂ pvp
∂ pc

dpc+
∂ pvp
∂T

dT +  1
p gz

∂ p vp
∂ p gz

-
pvp
pgz

2 dpgz                   éq 5.5.2-9

and ∇ C vp=
∇ pvp
pgz

-
pvp
p gz

2
∇ pgz  and that one differentiates in: 
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d ∇C vp= d [∇ pvp
p gz

-
pvp
pgz

2
∇ p gz ]= d∇ pvp

p gz
-
∇ p gz
pgz

2
dp vp+ 2 pvpp gz3

∇ pgz -
∇ pvp
pgz

2 dpgz - pvppgz2 d ∇ pgz

éq 5.5.2-10

with 

∇ p vp=
∂ pvp
∂ pgz

∇ pgz+
∂ pvp
∂ pc

∇ pc+
∂ pvp
∂T

∇ T éq 5.5.2-11

and d ∇ pvp  that one differentiates in the following way: 

d ∇ pvp= d
∂ pvp
∂ p gz

∇ p gz+ d
∂ p vp
∂ pc

∇ pc +d
∂ pvp
∂T

∇ T +
∂ pvp
∂ pgz

d ∇ pgz +
∂ pvp
∂ pc

d∇ pc+
∂ pvp
∂T

d ∇ T

= ∂∂ pc
∂ p vp
∂ p gz

∇ pgz+
∂

∂ pc

∂ pvp
∂ pc

∇ pc +
∂

∂ pc

∂ pvp
∂T

∇ T dpc
+ ∂∂ pgz

∂ pvp
∂ pgz

∇ p gz+
∂

∂ p gz

∂ pvp
∂ pc

∇ pc+
∂

∂ p gz

∂ pvp
∂T

∇ T dpgz
+ ∂∂T ∂ pvp

∂ p gz
∇ p gz+

∂

∂T

∂ pvp
∂ pc

∇ pc+
∂

∂T

∂ pvp
∂T

∇ T dT
+
∂ p vp
∂ p gz

d ∇ pgz +
∂ pvp
∂ pc

d ∇ pc+
∂ pvp
∂T

d ∇ T

 

éq 5.5.2-12

The derivative partial of the second order are developed in [§Annexe 4].

For the dissolved air, one proceeds with the same stages:

Cad = ad  = M ad
ol .
pad
RT

 

thus 

dC ad =M ad
ol . dpadRT

 - 
pad
RT 2

dT   who gives 

dC ad =M ad
ol .[ 1

RT

∂ pad
∂ pc  dpc+ 

1
RT

∂ pad
∂ pgz  dp gz+

∂ pad
∂T

-
Pad
RT 2  1

plq
dT ]    éq 5.5.2-13

and  ∇Cad = M ad
ol .( ∇ pad

RT
-
pad
RT 2

∇ T )  and that one differentiates in: 

d ∇C ad = M ad
ol [ 1
RT

d ∇ pad - 
∇ T

RT 2
dpad +( 2

pad
RT 3

∇ T -
∇ pad
RT 2 ) dT -( padRT 2) d ∇ T ] éq 5.5.2-14

with 
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∇ pad =
∂ pad
∂ pgz

∇ pgz  +
∂ pad
∂ pc

∇ pc+
∂ pad
∂T

∇ T                                éq 5.5.2-15

and d ∇ pad  that one differentiates in the following way:

= ∂∂ pc
∂ pad
∂ pgz

∇ p gz+
∂

∂ pc

∂ pad
∂ pc

∇ pc +
∂

∂ pc

∂ pad
∂T

∇ T dp c
+ ∂∂ pgz

∂ pad
∂ pgz

∇ p gz+
∂

∂ p gz

∂ pad
∂ pc

∇ pc+
∂

∂ pgz

∂ pad
∂T

∇ T dpgz
+ ∂∂T ∂ pad

∂ p gz
∇ pgz+

∂

∂T

∂ pad
∂ pc

∇ pc+
∂

∂T

∂ pad
∂T

∇ T dT
+
∂ pad
∂ p gz

d ∇ p gz+
∂ pad
∂ pc

d ∇ pc+
∂ pad
∂T

d ∇ T

  éq 5.5.2-16

The derivative partial of the second order are developed in [§Annexe 4].
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Annexe 1Generalized constraints and internal variables

Constraints: 

Number Name of component Aster Contents

1  SIXX  xx
'

 

2  SIYY  yy
'

 

3  SIZZ  zz
'

 

4  SIXY  xy
'

 

5  SIXZ  xz
'

 

6  SIYZ  yz
'

 

7  SIPXX  pxx  

8  SIPYY  pyy  

9  SIPZZ  pzz  

10  SIPXY  pxy  

11  SIPXZ  pxz  

12  SIPYZ  pyz  

13  M11 mw  

14  FH11X M wx  

15  FH11Y M wy  

16  FH11Z M wz  

17  ENT11 hw
m

 

18  M12 
m

vp  

19  FH12X Mvp x  

20  FH12Y Mvp y  

21  FH12Z Mvp z  

22  ENT12 hvp
m

 

23  M21 m
as  

24  FH21X Mas x  

25  FH21Y Mas y  

26  FH21Z Masz  

27  ENT21 has
m

 

28  M22 
m

ad  

29  FH22X Mad x  

30  FH22Y Mad y  
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31  FH22Z Mad z  

32  ENT22 had
m

 

33  QPRIM Q '  

34  FHTX q x  

35  FHTY q y  

36  FHTZ qz  
    

In  the  case without  mechanics,  and for  the  laws of  behaviors  (LIQU_VAPE_GAZ, LIQU_VAPE,
LIQU_AD_GAZ_VAPE and LIQU_AD_GAZ) the internal variables are:

Number Name component Aster Contents
1 V1 lq−

lq

0
 

2 V2 −
0  

3 V3 pvp−pvp
0  

4 V4 S lq  

In the case without mechanics,  and for the laws of  behaviors (LIQU_GAZ, LIQU_GAZ_ATM,) the
internal variables are:

Number Name component Aster Contents
1 V1 lq−

lq

0
 

2 V2 −
0  

3 V3 S lq  

In the case without mechanics, and for the laws of behaviors (LIQU_SATU,) the internal variables are:

Number Name component Aster Contents
1 V1 lq−

lq

0
 

2 V2 −
0  

In the case with mechanics the first numbers will  be those corresponding to mechanics (V1 in the
elastic case,  V1 and following for plastic models).  The number of  the internal variables above will
have to then be incremented of as much.

Annexe 2Data material

One gives here the correspondence between the vocabulary of the orders Aster and the notations used in the
present note for the various sizes characteristic of materials.

A2.1 Keyword factor THM_LIQU

♦ RHO lq
0  

◊ UN_SUR_K
 

1
K lq
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◊ ALPHA  lq  

◊ CP C lq
p  

◊ VISC   lqT   

◊ D_VISC_TEMP
 
∂ lq
∂T

T   

A2.2 Keyword factor THM_GAZ

◊ MASS_MOL  M as
ol  

◊ CP  C lq
P  

◊ VISC as T   

◊ D_VISC_TEMP ∂ as
∂T

T   

A2.3 Keyword factor THM_VAPE_GAZ

◊ MASS_MOL M VP
ol  

◊ CP Cvp
p  

◊ VISC  vp T   
◊ D_VISC_TEMP ∂ vp

∂T
T   

A2.4 Keyword factor THM_AIR_DISS

◊ CP Cad
p  

◊ COEF_HENRY K H  

A2.5 Keyword factor THM_INIT

♦ TEMP  initT  
♦ PRE1  init P1  

♦ PRE2  init P2  

♦ PORO  
0  

♦ NEAR_VAPE  P vp
0  

It is pointed out that, according to modeling, the two pressures  and  represent:

LIQU_SATU LIQU_VAPE LIQU_GAZ_ATM GAS LIQU_VAPE_GAZ

P1  pw  pw  pc=- pw  p gz  pc= p gz- pw  

 P2  p gz  

LIQU_GAZ LIQU_AD_GAZ_VAPE LIQU_AD_GAZ

 
P1

pc= p gz - pw pc= pgz - pw - pad  pc = p gz - pw - pad  

P2 p gz  p gz  p gz  
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A2.6 Keyword factor THM_DIFFU

♦ R_GAZ R  
◊ RHO  r 0  
◊ CP  C

S  

◊ BIOT_COEF  b  
◊ BIOT_L  bL  
◊ BIOT_N  bN  
◊ BIOT_T  bT (case 2D)
◊ SATU_PRES  S lq  pc   
◊ D_SATU_PRES

 
∂ S lq
∂ pc

 pc  

◊ PESA_X  Fx
m  

◊ PESA_Y  F y
m  

◊ PESA_Z  F z
m  

◊ PERM_IN  K int
  

◊ PERMIN_L  K L
int   

◊ PERMIN_N K N
int   

◊ PERMIN_T K T
int
 (case 2D)

◊ PERM_LIQU  K lq
rel
S lq  

◊ D_PERM_LIQU_SATU
 
∂ klq

rel

∂ S lq
S lq  

◊ PERM_GAZ  k gz
rel
S lq , pgz  

◊ D_PERM_SATU_GAZ
 
∂ k gz

rel

∂ S lq
S lq , pgz   

◊ D_PERM_PRES_GAZ
 
∂ k gz

rel

∂ pgz
S lq , pgz   

◊ FICKV_T f vp
T
T   

◊ FICKV_S f vp
S
S   

◊ FICKV_PG f vp
gz
 Pg   

◊ FICKV_PV f vp
vp
P vp   

◊ D_FV_T ∂ f vp
T

∂T
T   

◊ D_FV_PG ∂ f vp
gz

∂P gz

 P gz   

◊ FICKA_T f ad
T
T   

◊ FICKA_S f ad
S
S   

◊ FICKA_PA f ad
ad
 Pad   

◊ FICKA_PL f ad
lq
 P lq  

◊ D_FA_T ∂ f vp
T

∂T
T   
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◊ LAMB_T T
T
T   

◊ LAMB_T_L T
T T   according to L 

◊ LAMB_T_N T
T T   according to NR 

◊ LAMB_T_T T
T
T   according to T (2D) 

◊ D_LB_T
∂T

T T 

∂T
 

◊ D_LB_T_L
∂T

T
T 

∂T
 according to L

◊ D_LB_T_N
∂T

T
T 

∂T
 according to NR 

◊ D_LB_T_T
∂T

T
T 

∂T
 according to T

◊ LAMB_PHI 

T
  

◊ D_LB_PHI
∂

T


∂
 

◊ LAMB_S S
T
S   

◊ DLAMBS
∂S

T
S 

∂S
 

◊ LAMB_CT CT
T  

◊ LAMB_CL CT
T  according to L

◊ LAMB_CN CT
T  according to NR

◊ LAMB_CT CT
T  according to T

  
Note:

For modelings utilizing it thermal, and for the calculation of the homogenized specific heat, one uses

the  relation:  C


0 =  1- sC

s +lq S lqC lq
p + 1 - S lq   vpC vp

p +asC as
p   .  In  this  formula,  one

confuses  s  with its initial value  S
0  whose value is read under the keyword  RHO keyword factor

ELAS. 

Annexe 3 Derived  from  the  pressures  according  to  the
generalized deformations

One details here the calculation of the derivative of pressure according to the generalized deformations. It is

pointed  out  that  the  equation  [éq  3.2.6.3]  is  
dpvp
vp

=
dpw
w

+ L
dT
T

 with  L=hvp
m
−hw

m .  Moreover

dpad =dp lq - dpw=
R
K H

pas dT +
RT
K H

dpas and dpas=dpgz−dpvp . By combining these equations one obtains:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is
provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Modèles de comportement THHM Date : 04/11/2021 Page : 58/62
Responsable : GRANET Sylvie Clé : R7.01.11 Révision  :

3731397193c7

{ dpvp[ RTK H

-
w

vp ]=  - Lw+ pad 
dT
T

+ RTK H

-1 dpgz+dpc
dpw [ vpw

RT
K H

-1]=  - LR vp
K H

+
pad
T  dT +  RTK H

-1 dp gz+dpc
 

One can thus write the derivative partial of water and the vapor according to the generalized deformations:

∂ pw
∂T

=

- LR
vp
K H

+
pad
T

vp

w

RT
K H

-1

;
∂ pw
∂ pgz

=

RT
K H

-1

vp

w

RT
K H

-1

;
∂ pw
∂ pc

=
1

vp

w

RT
K H

-1

 

∂ pvp
∂T

 - Lw+ pad 
RT
K H

-
w

vp

.
1
T
;

∂ pvp
∂ pgz

RT
K H

- 1

RT
K H

-
w

vp

;
∂ pvp
∂ pc

1

RT
K H

-
w

vp

 

Relations  dpas=dpgz−dpvp  and  dpad =dpgz - dpc - dpw  allow to  derive  all  the pressures,  since one will
have:

∂ pas
∂T

=-
∂ pvp
∂T

;
∂ pas
∂ p gz

= 1-
∂ pvp
∂ pgz

;
∂ pas
∂ pc

=-
∂ pvp
∂ pc

 

and
∂ pad
∂T

=-
∂ pw
∂T

;
∂ pad
∂ pgz

= 1-
∂ pw
∂ pgz

;
∂ pad
∂ pc

= -1 -
∂ pw
∂ pc
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Annexe 4 Derived  seconds  from  air  and  steam  pressures
dissolved according to the generalized deformations

One calculates here the derivative partial of the second order of the steam pressure necessary to  the section

[§5.5.2]. One will note thereafter:

A1=
RT
K H

-
w

vp
 and A2=

w

vp 
RT
K H

−1
A3=

1
pvp

∂ pvp
∂T

−
1
T
−

1
K w

∂ pw
∂T

−3w  

A4=−
1
pvp

∂ pvp
∂T


1
T


1
K w

∂ pw
∂T

−3w  

Derived seconds from the steam pressure:

∂

∂ pc

∂ pvp
∂ pgz

=
A2

A12  1
K w

∂ pw
∂ pc

-
1
pvp

∂ pvp
∂ pc   

∂

∂ p gz

∂ pvp
∂ p gz

=
A2

A12  1
K w

∂ pw
∂ pgz

-
1
pvp

∂ pvp
∂ pgz   

∂

∂T

∂ pvp
∂ pgz

=
R

K H A1
-

1

A12  RTK H

-1 RK H

-
w
ρvp
A4  

∂

∂ pc

∂ pvp
∂ pc

=-
w

vp

1

A12  1
pvp

∂ pvp
∂ pc

-
1
K w

∂ pw
∂ pc   

∂

∂ p gz

∂ pvp
∂ pc

= -
w

vp

1

A12  1
pvp

∂ pvp
∂ pgz

-
1
K w

∂ pw
∂ pgz   

∂

∂T

∂ pvp
∂ pc

= -
1

A12  RK H

-
w
ρvp
A4  

∂

∂ pc

∂ pvp
∂T

=−
1
T

1

A12  A11−∂ pw
∂ pc

1+ L
w
KW

 +  pad - Lw 
w

vp 
1
K w

∂ pw
∂ pc

−
1
pvp

∂ pvp
∂ pc    

∂

∂ p gz

∂ pvp
∂T

=−
1
T

1

A12  A11− ∂ pw
∂ pgz

1 + L
w
KW

 + pad−Lw 
w

vp 
1
Kw

∂ pw
∂ pgz

−
1
pvp

∂ pvp
∂ pgz    

 

∂

∂T

∂ pvp
∂T

=
1

T . A1  ∂ pad∂T
−L w

K W

∂ pw
∂T

−3ww − 1

T 2 . A12  RTK H

−
w

vp
T 

R
K H

−
w

vp
A4   pad−Lw 
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Derived seconds from the dissolved air pressure:

∂

∂ pc

∂ pad
∂ pgz

=
RT
K H

A2

A12  1
pvp

∂ pvp
∂ pc

−
1
Kw

∂ pw
∂ pc   

∂

∂ p gz

∂ pad
∂ pgz

=
RT
K H

A2

A12  1
pvp

∂ pvp
∂ pgz

−
1
K w

∂ pw
∂ pgz   

∂

∂T

∂ pad
∂ pgz

=−RK H

w

vp

1
A1

 wvp 
2

R
K H

A2

A1
2  1+ A3 .T   

∂

∂ pc

∂ pad
∂ pc

=
RT
K H

w

vp

1

A12  1
pvp

∂ pvp
∂ pc

−
1
K w

∂ pw
∂ pc   

∂

∂ p gz

∂ pad
∂ pc

=
RT
K H

w

vp

1

A12  1
pvp

∂ pvp
∂ pgz

−
1
K w

∂ pw
∂ pgz   

∂

∂T

∂ pad
∂ pc

=
R
K H

w

vp

1

A12  1A3 .T   

∂

∂ pc

∂ pad
∂T

=
1
A1

w

vp 
LR
K H

vp
pvp

∂ pvp
∂ pc

−
1
T

∂ pad
∂ pc −

RT
K H

w

vp

1

A12  LRK H

vp−
pad
T  . A3  

∂

∂ p gz

∂ pad
∂T

=
1
A1

w

vp 
LR
K H

vp
pvp

∂ pvp
∂ p gz

−
1
T

∂ pad
∂ pgz −

RT
K H

w

vp

1

A12  LRK H

vp−
pad
T  . A3  

∂

∂T

∂ pad
∂T

=
1
A1

w

vp 
LRvp
K H

 1
pvp

∂ pvp
∂T

−
1
T  pad

T 2 −
1
T

∂ pad
∂T  -

RT
K H

w

vp

1

A12  LRK H

vp−
pad
T  . A3 1

T   
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Annexe 5 Equivalence with formulations ANDRA

In order to be able to fit in the ALLIANCE platform, it is necessary to be coherent with the formulations posed
by the ANDRA. We propose here an equivalence between the notations which would be dissimilar.  These
differences relate to only the writing of:

• The equation of energy
• The law of Henry
• Diffusion in the liquid
• Diffusion in gas

Notice concerning the enthali:

It is required to have coherence between the two models that the user of Code_Aster takes: h lq
m0 =0

and hvp
m0 = L0 .

A5.1 Equation of energy

The table above points out the two formulations:
 

Notations Code_Aster Notations ANDRA

h lq
m  

=
w

w S w n
 

hvp
m  

=
v

v 1- S w  n
 

has
m  

=
as

as 1 - S w  n
 

M lq  =w f w  

Mas  =as f as  

Mvp  =v f v  

By rewriting the equation of the energy of Code_Aster with these notations, one finds: 

d 
dt

Div w

f w
Sw n

as

f as
1−S w  n

+v

f v
1−S w  n Div q  − T−T 0  d

dt
[  1−n sC s ]

30 K 0T
d  v
dt

+ 3lq
mT
dpc
dt

−3 lq
m
 gz

m T
dpgz
dt

−9TK002

dT
dt

=w f w+v f v +as f as  g +

 

The first line being that of the ANDRA and others being a priori negligible.

A5.2 Law of Henry

In the formulation of the ANDRA, the formulation of Henry is given by  l
a=
Pas
H

M as
ol

M w

w  with the

concentration of air in water that have it can bring back to a density such as l
a=ad . H  express

yourself in Pa .
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In the formulation of  Code_Aster,  it  is pointed out that the law of  Henry is expressed in the form:

Cad
ol =

ad

M ad
ol  with Cad

ol =
pas
K H

. K H  express yourself in Pa.m3 .mol−1 .

There is thus equivalence:

K H =H
M w

w
 

A5.3 Diffusion of the vapor in the air

In formulation ANDRA the steam flow in the air according to the steam concentration d' in the air  or
the relative humidity is noted:

f Diff v=−Dv .∇ g
e

 

with the concentration defined as the molar report in gas: g
e = 

n


n g
. 

In  Code_Aster,  this  same  flow  is  written: f Diff v=F vp∇C vp
 

with  the  coefficient  of  Fick  vapor

F vp=
D vp

C vp1−C vp 
 and Dvp  the coefficient of diffusion of Fick of the gas mixture.  C vp  is defined

like the report of the pressures such as: C vp =
pvp
pgz

.

The  law  of  perfect  gases  makes  it  possible  to  write  that  C vp =g
e  thus  ∇g

e =∇C vp  and

f Diff v =D v .∇C vp .

Thus equivalence Code_Aster/ANDRA is written simply:

F vp  = Dv .

A5.4 Diffusion of the air dissolved in water

In formulation ANDRA the flow of air dissolved in water is expressed

f ads e =Da .∇l
a

 

with l
a=

ad

M ad
ol . 

In Code_Aster, this same flow is written:  f ads v = F ad∇Cad
 
with the coefficient  of  air-dissolved  Fick

F ad=
Dad

Cad 1−Cad 
 and Dad  the coefficient of diffusion of Fick of the liquid mixture.  Cad  is defined

such as: Cad =wl
a . Thus:

F ad =Da .
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