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Integration of the elastoplastic mechanical 
behaviors of Drucker-Prager, associated 
(DRUCK_PRAGER)and non-aligned 
(DRUCK_PRAG_N_A) and postprocessings

Summary:

This document describes the principles of several developments concerning the elastoplastic law of behavior of 
Drucker-Prager in associated version (DRUCK_PRAGER)and non-aligned (DRUCK_PRAG_N_A).

One is interested initially in integration itself of the law then, this law being lenitive, with an indicator of 
localization of Rice and finally with the calculation of sensitivity per direct differentiation for this law.
For the integration of the law, one uses an implicit scheme.
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1 Introduction

The law of Drucker-Prager makes it possible to model in an elementary way the elastoplastic behavior
concrete or certain grounds. Compared to the plasticity of Von-Put with isotropic work hardening, the
difference  lies  in  the  presence  of  a  term  in  Tr   in  the  formulation  of  the  threshold  and  a
nonworthless spherical component of the tensor of the plastic deformations.

In  Code_Aster,  the  law  exists  in  the  associated  version  (DRUCK_PRAGER)and  non-aligned
(DRUCK_PRAG_N_A), more adapted for certain grounds because it makes it possible to better take
into account dilatancy.

This note gathers the theoretical aspects several developments carried out in the code around this law:
its integration according to an implicit  scheme in time, an indicator of  localization of Rice and the
calculation of sensitivity per direct differentiation. Isotropic material is supposed. The indicator of Rice
and the calculation of sensitivity do not function under the assumption of the plane constraints.

The theory and the developments were made for two types of function of work hardening: linear and
parabolic,  this function being in  all  the cases constant  beyond of  a cumulated plastic  deformation
“ultimate”.

2 Integration of the law of behavior of Drucker-Prager
2.1 Notations

The mechanical constraints are counted positive in traction, the positive deformations in extension.

u  displacements of the skeleton of components u x , uy , uz

=
1
2
∇ u∇T u   tensor of the linearized deformations

e=−
Tr  

3
I  diverter of the deformations

v=Tr    trace of the deformations: variation of volume


p  Tensor of the plastic deformations,

v
p
=Tr  p   plastic variation of volume.

e p  diverter of the plastic deformations

p  cumulated plastic deformation

  Tensor of the constraints

s=−
Tr  

3
I  diverter of the constraints

eq= 3
2
s : s  

Equivalent constraint of Von Mises

I 1=Tr    trace of the constraints

E0  Young modulus

 0  Poisson's ratio

  Angle of friction

c  Cohesion


0  Initial angle of dilatancy

One poses 2=
E0

1 0

 and K=
E0

3 1−2 0
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2.2 Formulation in associated version

2.2.1 Expression of the behavior 

  is the tensor of  the constraints, which depends only on    and its history. One considers the
criterion of the Drücker-Prager type:

F  , p = eqAI 1−R p 0  (2.2.1-1)

where A  is a given coefficient and R  is a function of the cumulated plastic deformation p  (function
of work hardening), of type linear or parabolic:

•  linear work hardening

R p =Yh. p  if  p∈[0, pultm]   

R p =Yh. pultm  if  p pultm

Coefficients h , pultm  and Y  are given.

(2.2.1-2)

•  parabolic work hardening

R p =Y 1−1−Yultm

Y


p

pultm

2  if  p∈[0, pultm]

R p =Y
ultm

 if  p pultm

Coefficients Yultm , pultm  and Y  are given.

 (2.2.1-3)

Notice 1:

One can be given instead of A  and Y  the binding fraction c  and the angle of friction 
: 

A=
2 sin

3−sin
 

σ Y=
6c cos
3−sin

 

Notice 2:

One chose in this document to privilege the variable p . Cumulated plastic deformation of

shearing 
p
= p3/2  also is very much used in soil mechanics. 

By considering an associated version one supposes that the potential of dissipation follows the
same expression as that of the surface of load F  . The plastic flow is summarized then with: 
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d  p=d 
∂F  , p 
∂

 (2.2.1-4)

with:

d ≥0 ; F⋅d =0 ; F≤0  (2.2.1-5)

The law of normality compared to the generalized force R gives the equality between the 
increment of cumulated plastic deformation and the increment of the multiplier   : 
 

dp=−d 
∂ F  , p 
∂ R

=d   (2.2.1-6)

2.2.2 Analytical resolution of the mechanical formulation
 

One places oneself in this chapter within the framework of finished increase. The integration of the law
follows a pure implicit scheme, and the resolution is analytical. The finished increment of deformation
   known and is provided by the iteration of total Newton. One uses by convention the following

notations: an index – to indicate a component at the beginning of step of loading, any index for a
component  at  the  end  of  the step  of  loading,  and  the  operator    to  indicate  the increase  in  a
component. The equations translating the elastic behavior are written then:

s=s-2  e− e p=se−2 e p  (2.2.2-1)

  

I 1=I 1
-
3K   v−  v

p
= I 1

e
−3K  v

p  (2.2.2-2)

 
Equations (2.2.1-4) and (2.2.1-6), taking into account (2.2.1-1), give:

  p= p ∂ eq

∂
A

∂ I 1

∂ = p  32 s
eq

A I   (2.2.2-3)

From where: 

 v
p=3 A p  (2.2.2-4)

 e p=
3
2
s
 eq

 p  (2.2.2-5)

If the increment  e p that is to say not no one, the increment of cumulated plastic deformation can be
also written: 

 p= 2
3
 e p : e p  (2.2.2-6)

 

By combining the equations (2.2.2-1) and (2.2.2-5) one finds: 
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s 1
3 p
 eq

=se  (2.2.2-7)

from where: 

eq3⋅ p=eq
e

 (2.2.2-8)

  
what leads to:

s
eq

e

eq

=se  (2.2.2-9)

By combining the equations respectively (2.2.2-7) and (2.2.2-8), and equations (2.2.2-2) and (2.2.2-4),
one obtains:

{s=s
e1−3μ

 eq
e
 p

I 1=I 1
e−9 KA p

 (2.2.2-10)

By reinjecting the equation on  I 1  and the relation  eq= eq
e
−3⋅ p  in  the formulation of  the

threshold, one obtains the scalar equation in  p  :

eq
e
AI 1

e
− p 39 KA2

−R  p− p =0  (2.2.2-11)

It is supposed that: F  e , p− 0 .

To continue the resolution, one must now distinguish several cases:

1) Case where p-pultm

One a: R p- p=R  p-  

The scalar equation thus becomes: F  e , p− − p 3μ9 KA2 =0  

One finds:

 p=
F e , p−
39 KA2

 

(2.2.2-12)

2) Case where p-
≤ pultm

2a)  Linear work hardening

One a: R p- p=R  p-h p

The scalar equation thus becomes:  F  e , p− − p 39 KA2
h =0  

One finds: 
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 p=
F e , p−

39 KA2h
 (2.2.2-13)

 
 

2b)  Parabolic work hardening

While expressing in the same way R p- p  according to R p-  and of  p , it is
found that the scalar equation is written:

F  e , p− B pG p2
=0  

with:

              {G=−
 Y

pultm
2 1−Yultm

Y


2

B=−3−9 KA2
2Y

pultm
1−

 Yultm

 Y
1−1− Yultm

 Y
 p−

pultm


 

The only positive root of the polynomial is: 

 p=
−B−B2−4G⋅F  e , p− 

2G
 (2.2.2-14)

              

2c) Final checking: Case where   p- p pultm
 

In  the  two  preceding  cases,  once   p  calculated,  it  should  be  checked  that

p- p≤pultm  . If this inequality is not satisfied, one has then:

R p- p=R  pultm  

The scalar equation thus becomes: 

F  e , pultm − p 39 KA2 =0  

 p=
F  e , pultm 
39 KA2

 (2.2.2-15)

The principle of the analytical resolution presented above is equivalent to determine the point  I 1 , s
like the projection of the point  I 1

e , se  on the criterion (plastic prediction rubber band-correction). This

method  thus  comes  from  the  law  of  flow  approximated  on  a  finished  increment,  and  can  be
represented by the following graph:
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3) Projection at the top of the cone 

The integration of the law on an increment  t  finished can be complicated when the state of stress is
close to the top of the cone (see the Figure 2.2.2-1), because of the nonsmooth character of surface
criterion. There are then two cases: 

● case of a pure hydrostatic state,
● case of projection in an not-acceptable field.

In the typical case of one  pure hydrostatic state, the derivative of the constraint of Von Mises  eq

compared to    is not defined. The law of flow (2.2.2-3) is unspecified (there is indeed a cone of
possible normals to the criterion), and the equations (2.2.2-5), (2.2.2-7), (2.2.2-8), (2.2.2-9) cannot be
written. There remains the definition of   p  on the trail of constraints (equation  2.2.2-4). As in the
case plus general, one must distinguish several cases:

1) Case where p-pultm  : R p- p=R  p-  

The scalar equation with eq=0 becomes  : A I 1
e
− p⋅9 KA2

=F  e , p -
− p⋅9 KA2

=0
One finds:

 p=
I 1

e

9 KA
 

(2.2.2-16)

2) Case where p -
≤ pultm

2a)  Linear work hardening 

One a: R p- p=R  p-h p

The scalar equation with eq=0  becomes: 

A I 1
e
− p⋅9 KA2

−R p -
h p=F  e , p-

− p⋅9 KA2
=0    

One finds then: 
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 p=
A I 1

e

9 KA2
h  

(2.2.2-17)

 
 

2b)  Parabolic work hardening

While expressing  R p- p  according to  R p-  and of   p ,  one still  finds the
solution (2.2.2-14) : 

with the value of B modified compared to the preceding case:

              B=−9 KA2
2 Y

pultm
1− Yultm

Y
1−1− Yultm

Y
 p−

pultm   

      2c) Final checking: Case where   p- p pultm
 

In the cases 2a) and 2b), if the inequality p - p≤pultm  is not satisfied, one a:

  

    R p- p=R  pultm  

The increment  p is given by the equation (2.2.2-16).
 

Because  of  the  incremental  resolution,  it  may  be  that  the  found  solution  is  not  acceptable,  with
eq0 . That can arrive when the state of stress at the moment t -  is close to the top of the cone.

One then chooses to project the state of stress found by elastic prediction on the top of the cone, that
is to say to refer to a state of purely hydrostatic stress. One makes a control a posteriori admissibility of

the solution  I 1 , s , and one makes possibly the correction.

In the details:
i) One brings up to date the state of stress by the means as of equations (2.2.2-12), (2.2.2-13),

(2.2.2-14), (2.2.2-15).

ii) One controls that the solution  I 1 , s  found either acceptable, or that eq0  where, in an

equivalent way, that I 1  maybe inside surface criterion:

I 1
R  p

A
 

iii) If this condition is not checked, one imposes the checking of the criterion with eq=0  (top of

the cone): I 1=
R  p

A
⇒ A⋅I 1−R  p=F  , R=0

iv) One renews the solution with the equations then (2.2.2-16), (2.2.2-17), (2.2.2-14).
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2.2.3 Calculation of the tangent operator

2.2.3.1 Total calculation of the tangent operator

One seeks to calculate the coherent matrix: 
∂

∂ 
=
∂s
∂


1
3
I⊗

∂ I 1

∂
By deriving the system from equations (2.2-7), one obtains:

{
∂s
∂
=
∂se

∂ 1−3


eq
e . p 3

 eq
e 

2 . p .se⊗∂eq
e

∂  −3
 eq

e .s
e
⊗∂ p
∂  

∂ I 1

∂
=
∂ I 1

e

∂ 
−9 KA

∂ p
∂

 

éq 2.2.3-1

Expression of ∂s
e

∂ 

∂ sij
e

∂ pq

=2 ip jq−
1
3
 ij pq  

Expression of 
∂ I 1

e

∂

∂ I 1
e

∂pq

=3K  pq  

Calculation of 
∂ eq

e

∂

∂ eq
e

∂ pq

=
3

eq
e

s pq
e

 

Calculation of 
∂ p
∂ 

∂ p
∂ pq

=−
1

T  p 
. 3

eq
e

s pq
e
3 AK  pq  

with:

T  p ={
−39 KA2          dans le cas p− p≥ pultm      écrouissage linéaire ou parabolique 

−39 KA2h     dans le cas p− p pultm      écrouissage linéaire

B2G p              dans le cas p− ppultm     écrouissage parabolique                  
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where B  and G  have the same expression as in the paragraph [§2.2].

  
Complete expression
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2.2.3.2 Initial calculation of the tangent operator

One seeks  has  to  express  
∂

−

∂−
.  For  that  one  will  seek to  calculate  the  tangent  operator  by  a

calculation of speed: 
∂̇

∂̇
.

On the basis of the expression: 0
















p
p

FF
F

σ
 it is shown that:

ṗ= 3μ
σeq D

s . ε̇ 3 AK
D

ε̇v  with D=3μ9 KA2
∂ R
∂ p

Expressions: σ̇=H  ε̇− ε̇ p   and 
σ

F
ε








p
p

 it is shown then that:

∂̇

∂̇
=H− 3

eq

s3 AK I  ∂ p
∂ ε  

who is not other than the form of the coherent matrix of the total system of the preceding paragraph
where Δp=0 .

2.3 Formulation in non-aligned version

The non-aligned version of the law Drucker-Prager introduced into Code_Aster does not have as a
claim to  model  a  realistic  physical  behavior  finely. The goal  is  to  represent  most  simply  possible
physics  (coarsely)  realistic,  in  particular  in  the  case  of  the soil  mechanics  for  which  the angle  of
dilatancy varies with the plastic deformation.

The plastic potential is thus different from the surface of load in this new formulation. Digital integration
was introduced only for the expression of behaviour with parabolic work hardening.

The plastic potential is the following: G σ , p =σ eqβ  p  I 1  

  
where  β  p   is  a  function  which  decrease  linearly  with  the  evolution  of  the  plastic  deformation
according to the relation 
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β  p ={  β ψ0 1− p
pult
 si  p∈   [0, pult ]

0 si  p pult

 

 

where 0  indicate the initial angle of dilatancy and β ψ0 = 2sin ψ0 
3−sin ψ0 

 . 

 

The plastic flow is written now

d ij
p=dp

∂G  , p 
∂ ij

 

knowing  that  one  always  has the  criterion  defining  the  surface  of  load:
F  , p =eqAI 1−R p ≤0  

2.3.1 Analytical resolution

Method  of  resolution  being  similar  to  that  of  the  chapter  2.2.2 one  points  out  below  only  the
expressions of the new equations

{Δeij
p =

3
2

s ij

σeq

Δp

ΔεV
p = 3 β  p  Δp

 

{sij=sij
e 1−3μ

Δp

σeq
e 

I 1=I 1
e−9Kβ  p  Δp

 

2.3.1.1 Case where p− pult

Δp=
F σ e , p− 

3μ
 

2.3.1.2 Case where p−≤ pult

In this case Δp  is solution of a polynomial equation of the second order of which the roots will depend
on the increment of deformation and the data characterizing the parameters materials. The polynomial
in question is the following

F σ e , p− C1 ΔpC 2 Δp2=0  

where F σe , p− 0 , and two constants C1  and C2  are defined by
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The root Δp  is then characterized according to the following code:

1/ if 0  2 C  then 
   

2

2211

 2

4     
  

C

CpFCC
p

e 


,σ

2/ if  0  2 C  and     
2

21

4
  

C

C
pF e ,σ  then there is no solution. A recutting of the step of time is

possible if the request were made in the order STAT_NON_LINE.

3/ if  0  2 C  and     
2

21

4
  

C

C
pF e ,σ  and  0  1 C  then the polynomial admits two solutions. One

chooses smallest positive of them. 
   

2

2211

 2

4     
  

C

CpFCC
p

e 


,σ

4/ if 0  2 C  and    
2

21

4
  

C

C
pF e ,σ  and 0  1 C  then there is no solution. A recutting of the step of

time is possible if the request were made in the order STAT_NON_LINE.

2.3.2 Calculation of the tangent operator

The formulation is modified very little compared to the associated case: equations 2.2.3-1 become: 

{
∂ s
∂ ε
=
∂ se

∂ ε 1−3μ

σeq
e

. Δp3μ

σeq
e 

2
. Δp .se ⊗

∂σ eq
e

∂ ε −3μ

σeq
e

.se⊗ ∂ Δp
∂ ε 

∂ I 1

∂ ε
=
∂ I 1

e

∂ ε
−9K β−β Ψ 0  Δp

pult
∂ Δp
∂ ε

 

2.3.2.1 Expression of 
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2.3.2.3 Calculation of 
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2.3.2.4 Calculation of 
∂Δp
∂ ε pq

∂Δp
∂ ε pq

=−
1

T Δp 
. 3μ

σeq
e s pq

e 3 AKδ pq  

with:

T  Δp ={
−3μ                           si p−Δp≥ pult

C12C2 Δp               si p−Δp pult

 

where C1  and C2  are constants defined in the paragraph 2.3.

2.3.2.5 Complete expression
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2.4 Internal  variables  of  the  Drucker-Prager  laws  associated  and
nonassociated

These models comprise 3 internal variables:

• V1  is the cumulated plastic deviatoric deformation p
• V2  is the cumulated plastic voluminal deformation ∑ V

p

• V3  is the indicator of state (1 if  p0 , 0 in the contrary case).
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3 Indicator of localization of Rice for the law Drucker-Prager

One defines the indicator of localization of the criterion of Rice within the framework of the law of
Drucker-Prager behavior. But the definition of an indicator of localization perhaps used, a more general
way, in studies in breaking process, mechanics of the damage, theory of the junction, soil mechanics
and rock mechanics (and overall within the framework of materials with lenitive law of behavior). 

This definite indicator a state from which the evolution of the studied mechanical system (equations, of
balance, law of behavior) can lose its character of unicity. This theory allows, in other words: 

1 the calculation of the possible state of initiation of the localization which is perceived like
the limit of validity of calculations by classical finite elements;

2 “qualitative” determination of the angles of orientation of the zones of localization.

The criterion of localization constitutes a limit of reliability of calculations by finite elements “classical”.

3.1 Various ways of studying the localization

Within the framework of the studies conducted in soil mechanics, one noted a strong dependence of the
digital  solution according to the discretization by finite elements.  It  appears a concentration of high
values of the plastic deformations cumulated on the level of the finite elements and it is noted that this
“zone of localization” changes brutally with the refinement of the grid. This phenomenon of localization
is source of digital problems and generates problems of convergences within the meaning of the finite
elements.

The localization can be interpreted like an unstable, precursory phenomenon of mechanism of rupture,
characterizing certain types of materials requested in the inelastic field. To study instabilities related to
the localization one distinguishes, on the one hand, the material classes with behavior depend on time
and on the other hand, those not depending on time. For materials with behavior independent of time,
the  approach  commonly  used  is  the  method  called  by  junction  (it  is  with  this  method  that  one  is
interested in this note).  It  consists in analyzing the losses of unicity of  the problem in speeds.  For
materials with behavior depend on time, the unicity of the problem in speeds is often guaranteed and
this does not prevent the observation of instabilities at the time of their deformation. For these materials,
one must then resort to other approaches. Most usually used is the approach by disturbance. This
approach will not be treated in this note, but for more information to consult the notes [bib1], [bib2].

Rudnicki and Rice [bib3] showed that the study of the localization of the deformations in rock mechanics
lies within the scope of the theory of the junction. This one is based on the concept of balance unstable.
Rice [bib4] considers that the point of junction marks the end of the stable mode. The beginning of the
localization is associated with a rheological  instability of  the system and this instability corresponds
locally to the loss of ellipticity of the equations which control continuous incremental balance in speeds.
Rice thus proposes a criterion known as of “junction by localization” which makes it possible to detect
the state from which, the solution of the mathematical equations which control the problem in extreme
cases considered and the evolution of the studied mechanical system (equations, of balance, law of
behavior) lose their character of unicity. This theory allows the calculation of the state of initiation of the
localization which is perceived like the limit of validity of calculations by classical finite elements.

3.2 Theoretical approach

3.2.1 Writing of the problem of speed

One considers a structure occupying, at one moment  t , the open one    of  ℜ
3 . The problem of

speed consists in finding the field rates of travel  v  when the structure is subjected at the voluminal

speeds of forces ḟ d , at the rates of imposed travel  vd  on a part  ∂1  border and at the surface

speeds of efforts Ḟ d  on the complementary part ∂2 .

In the local writing of the problem, the field rates of travel v  must thus check the problem:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part
and is provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Intégration des comportements de Drucker-Prager DR[...] Date : 25/09/2013 Page : 16/35
Responsable : CUVILLIEZ Sam Clé : R7.01.16 Révision  :

21e06b7eb1f6

 
1 v  sufficient regular and v=vd  on ∂1
2 Equilibrium equations:

div [L :ε v  ] ḟ d=0  on 

L : v .n=Ḟd  on ∂2

n  being the outgoing unit normal with ∂2 .

•Conditions of compatibility (one limits oneself here to the small disturbances):

ε  v =
1
2
[∇ v∇ v T ]  

where the operator L  is defined in a general way for the laws of behavior written in incremental form
by the relation:

σ̇=L ε ,V : ε̇  

with:

L={E  si F0 ou F=0  et 
b :E: ε̇

h
≤0

H= E−
E:a⊗ b :E

h
 si F=0 et 

b :E: ε̇
h

0
 

where σ is the constraint, ε  total deflection, V  a set of internal variables and F  surface threshold
of plasticity. Expressions of a ,b , E  and H depend on the formulation of the law of behavior.

3.2.2 Results of existence and unicity, Loss of ellipticity

We give in this chapter some results without demonstrations. The reference for these demonstrations
however is specified.

A sufficient condition of existence and unicity of the preceding problem is: 0ε:σ  . This inequality can
be interpreted like a definition, in the three-dimensional case, of not-softening. The demonstration is
made by Hill [bib5] for standard materials and by Benallal [bib1] for the materials not-standards. 

The loss of ellipticity corresponds to the moment for which the operator N.H.N  becomes singular for
a  direction  N  in  a  point  of  the  structure.  This  condition  is  equivalent  to the  condition:

det N.H.N =0 . It is the condition of “junction continues”1  within the meaning of Rice also called
acoustic  tensor.  Rice  and  Rudnicki  [bib3]  show that  this  condition  of  loss  of  ellipticity  of  the  local
problem  speed  is  a  requirement  with the  “continuous or  discontinuous” junction2 for  the  solid.  The
boundary conditions do not play any part, only the law of behavior defines the conditions of localization
(threshold of localization and orientation of the surface of localization.

The  continuous  junctions  thus  provide  the  lower  limit  of  the  range  of  deformation  for  which  the
discontinuous junctions can occur.

3.2.3 Analytical resolution for the case 2d.

One poses )0,N,N(N 21  with 1NN 2
2

2
1 

1  In a junction continues, a plastic deformation occurs inside and outside the zone of localization and one has
the same law of behavior inside and outside the band.

2  In a discontinuous junction, there is on both sides of the band a continuity of displacement but there is not
the same behavior. An elastic discharge occurs with external of the zone of localization, while a loading and
an elastoplastic deformation continue occur inside.
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One has then: N.H.N=[
A11 A12 0

A21 A22 0

0 0 C ]  where Ortiz [bib6] shows that:

 

C=N 1
2 H 1313N 2

2 H 23230  

A11=N 1
2 H 1111N 1 N 2H 1112H 1211 N 2

2 H 1212  

A22=N 1
2 H 1212N 1 N 2H 1222H 2212 N 2

2 H 2222  

A12=N 1
2 H 1112N 1 N 2H 1122H 1212 N 2

2 H 1222  

A21=N 1
2 H 1211N 1 N 2H 1212H 2211 N 2

2 H 2212  

It is thus enough to study the sign of det  A   as specified by Doghri [bib7]:

det  A =a0 N 1
4a1 N 1

3 N 2a2 N 1
2 N 2

2a3 N 1 N 2
3a4 N 2

4
 

with:
a0=H 1111 H 1212−H 1112 H 1211  

a1=H 1111H 1222H 2212 −H 1112 H 2211−H 1122 H 1211  

a2=H 1111 H 2222H 1112 H 1222H 1211 H 2212−H 1122 H 1212−H 1122 H 2211−H 1212 H 2211  

a3=H 2222 H 1112H 1211 −H 1122 H 2212−H 1222 H 2211  

a4=H 1212 H 2222−H 1222 H 2212  

One  poses  then  N 1=cos θ  and  N 2=sin θ  with  θ∈]− π
2

; 
π
2
] .  Two  cases  then  are

distinguished:

•if θ =+
π
2

 then det  A =0  if a4=0  ;

•if θ≠
π
2

 then det  A =0  if f  x =a4 x4a3 x3a2 x2a1 xa0=0  with x=tan θ .

3.2.4 Calculation of the roots

To solve a polynomial  of  degree N (like  that  definite above, where n=4) one proposes to use the
method known as “Companion Matrix Polynomial”. The principle of this method consists in seeking the
eigenvalues  of  the  matrix  (of  Hessenberg type)  of  order  N associated  with  the  polynomial.  If  the

polynomial  is considered  P x =xnan−1 xn−1. ..ak xk. . .a1 xa0 .  To seek the roots of

this polynomial amounts seeking the eigenvalues of the matrix:
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This indicator is calculated by the option INDL_ELGA of CALC_CHAMP [U4.81.04]. It produces in each
point  of  integration  5  components:  the  first  is  the  indicator  of  localization  being  worth  0  if
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det N.H.N 0  (not of localization), and being worth 1 if not, which corresponds has a possibility of
localization. The other components provide the directions of localization. 
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4 Calculations of sensitivity
 

The analysis of sensitivity relates only to the version associated with the formulation described with the
chapter 2.2.

4.1 Sensitivity to the data materials

4.1.1 The direct problem

We place ourselves in this part within the framework of the resolution of non-linear calculations.
In Code_Aster, any non-linear static calculation is solved incrémentalement. It thus requires with each
step of load },1{ Ii  the resolution of the système of non-linear equation:

{Ru i ,t i B ti=Li

Bu i=ui
d éq 4.1.1-

1

with 

R ui , t i k=∫  u i : wk d éq 4.1.1-

2

• wk  is the function of form of k ième degree of freedom of the modelled structure,

• R ui , t i  is the vector of the nodal forces.

The resolution of this system is done by the method of Newton-Raphson: 
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where Ki
n=
∂R
∂ u
∣
ui

n ,t i 
 is the tangent matrix with the step of load i  and with the iteration of Newton

n  . 

The solution is thus given by:
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n
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  éq 4.1.1-4 

with N  , the iteration count of Newton which was necessary to reach convergence. 

4.1.2 Derived calculation

4.1.2.1 Preliminaries
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Within the framework of the calculation of sensitivity, it is necessary to insist on the dependences of a
size compared to the others. We will thus clarify that the results of preceding calculation depend of a
parameter   given (elastic limit, Young modulus, density,…) and that in the following way: 

u i=ui  , i=i   .
 

 
But that is not sufficient. Also we place ourselves within the framework of an incremental calculation
with  law  of  behavior  of  the  Drucker-Prager  type.  If  one  considers  the  interdependences  of  the
parameters on an algorithmic level, one can write:

R=R σi−1Φ , pi−1Φ , Δu Φ   

σ i=σi−1ΦΔσ σ i−1Φ  , pi−1Φ , Δu Φ  , Φ   

pi= pi−1Φ Δp σ i−1Φ  , pi−1Φ  , Δu Φ  , Φ   

Where Δu  is the increment of displacement to convergence with the step of load i .

Let us specify the direction of the notations which we will use for the derivative:

•
∂ X
∂Y

 indicate the partial derivative explicit of X  compared to Y ,

• X ,Y  indicate the variation total of X  compared to Y .

4.1.2.2 Derivation of balance

Taking into account the preceding remarks, let us express the total variation of [éq 2.1-1] compared to
  : 
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éq 4.1.2.2 - 1

Let us notice that here 
∂R
∂Φ
=0  : R  does not depend explicitly on   but implicitly as we will see it

in detail in the continuation.

That is to say:








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



,,

,,,
)(
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i
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i

BuuB

RλBuK
uu éq 4.1.2.2 - 2

Where 

• Ki
N  is the last tangent matrix used to reach convergence in the iterations of Newton,

• R ,Φ∣Δu≠ΔuΦ  is the total variation of  R , without taking account of the dependence of  u
compared to  .

The problem lies now in the calculation of R ,Φ∣Δu≠ΔuΦ  .
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Note:

In [éq 4.1.2.2 - 2], one used the fact that  Ki
N=
∂R u i , t i 

∂Δu
 whereas in [éq 4.1.1-3] one

defined  it  by  Ki
N=
∂R u i , t i 

∂u i
N  .  There  is  well  equivalence  of  these  two definitions  in

measurement where  uuu   1ii  and that  R  depends indeed on  Δu  (and as well

sure of σ i−1  and pi−1  ). 

Note:

If  one  derives  compared  to    directly  [éq  4.1.1-3],  one  finds

1
//

1

,,, 








 nnt

n
n uKRB

u
K uu   .  What  is  the  same  thing

with convergence and reveals that the error on 
∂ u
∂Φ

 depends on K−1K ,Φ  . 

 
4.1.2.3 Calculation of the derivative of the law of behavior

In the continuation, by preoccupation with a clearness, we will give up the indices i−1  . 

According to [éq 4.1.1-2], one can rewrite R ,Φ∣Δu≠ΔuΦ   in the form: 

R ,Φ∣Δu≠ΔuΦ =∫ σ ,ΦΔσ ,Φ∣Δu≠Δu Φ :ε wk d éq 4.1.2.3 - 1

One must thus calculate  Δσ ,Φ∣Δu≠Δu Φ   . With this intention, we will  use the expressions which
intervene in the digital integration of the law of behavior. 

4.1.2.4 Case of linear elasticity

Within the framework of linear elasticity, the law of behavior is expressed by: 

{Δ σ=2μ . ε  Δu 
Tr  Δσ =3K .Tr ε  Δu 

 

or:

Δσ=2μ . ε  Δu K .Tr ε  Δu .Id
éq 4.1.2.4 - 1

where Id  is the tensor identity of order 2. 

Then, by calculating the total variation of [éq 4.1.2.4 - 1] compared to    one obtains: 

Δσ ,Φ=2μ ,Φ. ε  Δu K ,Φ .Tr  ε  Δu  . Id2μ . ε  Δu ,ΦK .Tr  ε  Δu ,Φ  . Id éq
4.1.2.4 - 2

That is to say:
Δσ ,Φ∣Δu≠Δu Φ =2μ ,Φ . ε  Δu K ,Φ.Tr ε  Δu . Id      éq

4.1.2.4 - 3 
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4.1.2.5 Case of the elastoplasticity of the Drucker-Prager type

The law of behavior of the Drucker-Prager type is written:
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
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     éq

4.1.2.5 - 1 
 

where S  is the tensor of the elastic flexibilities and R  is the criterion of plasticity defined by: 

in the case of a linear work hardening:
  

R p =h⋅pσ y  pour 0≤ p≤ pultm

R p =h⋅pultm  pour p≥ pultm

 

 
in the case of a parabolic work hardening:

R p =σ y⋅1-1-σ ultm
y

σ y
⋅

p
pultm

2  pour 0≤ p≤ pultm

R p =σultm
y  pour p≥ pultm

 

In digital terms, this law of behavior is integrated using an algorithm of radial return: one makes an

elastic prediction (noted σ
e

 ) that one corrects if the threshold is violated. One thus writes: 


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
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p
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e
e
eq



uεσ

σuεσ

éq

4.1.2.5 - 2

We will distinguish two cases.

1 er case  : Δp=0  
What amounts saying that at the time of these step of load, the point of Gauss considered did not see
an increase in its plasticization. One finds oneself then in the case of linear elasticity:

Δσ ,Φ∣Δu≠Δu Φ =2μ ,Φ . ε  Δu K ,Φ.Tr ε  Δu . Id     éq 4.1.2.5 - 3 

2 eme case  : Δp0  
Taking into account the dependences between variables in [éq 4.1.2.5 - 1], one can write:
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éq 4.1.2.5 - 4

Moreover, in agreement with the algorithmic integration of the law, we will separate parts deviatoric and
hydrostatic.
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    éq 4.1.2.5 - 5 

And thus, one calculates:
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where J  is the operator deviatoric defined by: J :σ=σ  
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One  must  also  calculate  the  derivative  partial  of  the  increment  of  plastic  deformation  cumulated
compared  to  the  parameters  materials,  the  constraints  and  the  cumulated  plastic  deformation  (cf
Annexes)

Those are obtained by deriving the equation solved to calculate the increment of plastic deformation
cumulated during direct calculation.

4.1.2.6 Calculation of the derivative of displacement

Once  Δσ ,Φ∣Δu≠Δu Φ   calculated,  one can  constitute  the second member  R ,Φ∣Δu≠Δu Φ   while
using [éq 4.1.2.3 - 1]. One then solves the system [éq 4.1.2.2 - 2] and one obtains the increment of
derived displacement compared to Φ  . 

4.1.2.7 Calculation of the derivative of the other sizes

Now that one has Δu ,Φ  , one must calculate the derivative of the other sizes. One separates two
more cases: 

Linear elasticity
According to [éq 4.1.2.5 - 1], one as follows calculates the derivative of the increment of constraint:

Δσ ,Φ=Δσ ,Φ∣Δu≠Δu Φ 2μ . ε  Δu ,Φ K .Tr  ε  Δu ,Φ  .Id  

The increment of cumulated plastic deformation, as for him, does not see evolution:

Δp ,Φ=0  
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Elastoplasticity of the Drucker-Prager type
If 0p  , the preceding case is found. 
If not, one obtains according to [éq 4.1.2.5 - 2]:

Δσ ,Φ=Δσ ,Φ∣Δu≠Δu Φ 
∂ Δσ
∂ ε  Δu 

:ε  Δu ,Φ   

And for the cumulated plastic deformation, one uses the following relation:
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The significant equivalent constraints are calculated as follows:
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Once all these calculations are finished, all the derived sizes are reactualized and one passes to the
step of load according to.

 
4.1.2.8 Synthesis

To summarize  the preceding paragraphs,  one represents the  various  stages  of  calculation by  the
following diagram:

 
 

 

4.2 Sensitivity to the loading

The approach is here rather close to that of the preceding paragraph. We develop it  nevertheless
entirely in a preoccupation with a clearness, so that this paragraph can be read independently.
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4.2.1 The direct problem: expression of the loading

Until now we expressed the direct problem in the form:










d
ii

ii
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ii t

uBu

LBuR ),(

éq 4.2.1-1

The loadings are gathered with  the second member and understand the imposed forces  Li  and

imposed displacements ui
d

.

Let  us suppose that  the loading in imposed force  Li  depends on a scalar parameter    in  the
following way:

Li α =Li
1Li

2α  éq 4.2.1-

2

Where 

• Li
1  is a vector independent of α ,

• Li
2  depends linearly on α .

One wishes to calculate the sensitivity of the results of direct calculation to a variation of the parameter
α  . 

4.2.2 The derived problem

4.2.2.1 Derivation of balance

As in the preceding chapter, by taking account of the dependences between the various fields, one
derives balance [éq 4.2.1-1] by report α   : 
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One used the fact that Li
2  depends linearly on α .

That is to say:
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 éq 4.2.2.1 - 2 

Where 
• Ki

N  is the last tangent matrix used to reach convergence in the iterations of Newton,
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• R ,α∣Δu≠Δu α   is the total variation of  R , without taking account of the dependence of  Δu
compared to α .

The problem lies like previously in the calculation of R ,α∣Δu≠Δu α   . 

4.2.2.2 Calculation of the derivative of the law of behavior

According to [éq 4.1.1-2], one can rewrite R ,α∣Δ u≠Δu α   in the form: 

R ,α∣Δu≠Δu α =∫ σ ,αΔσ ,α∣Δu≠Δuα   :ε wk d éq 4.2.2.2 - 1

With this intention, we will use the expressions which intervene in the digital integration of the law of
behavior to calculate Δσ ,α∣Δu≠Δu α  .

4.2.2.3 Case of linear elasticity

Within the framework of linear elasticity, the law of behavior is expressed by:

Δσ=2μ . ε  Δu K .Tr ε  Δu .Id
éq 4.2.2.3 - 1

where Id  is the tensor identity of order 2. 

Then, by calculating the total variation of [éq 4.2.2.3 - 1] compared to    one obtains: 

Δσ ,α=2μ ,α . ε  Δu K ,α .Tr ε  Δu  . Id2μ . ε  Δu ,α K .Tr ε  Δu ,α . Id
=0. 0. 2μ . ε  Δu ,α K .Tr  ε  Δu ,α . Id

éq 4.2.2.3 - 2

That is to say:
Δσ ,α∣Δu≠Δu α=0.  

4.2.2.4 Case of the elastoplasticity of the Drucker-Prager type

As previously, we will distinguish two cases. 

1 er case  : 0p  
What amounts saying that at the time of these step of load, the point of Gauss considered did not see
an increase in its plasticization. One finds oneself then in the case of linear elasticity:

 
 Δσ ,α∣Δu≠Δu α=0.  

2 eme case  : Δp0  
Taking into account the dependences between variables, one can write:

{Δσ ,α =
∂ Δσ
∂α


∂ Δσ
∂ σ
⋅σ ,α

∂ Δσ
∂ p

⋅p ,α
∂ Δσ
∂ ε  Δu 

⋅ε  Δu ,α 

Δp ,α =
∂ Δp
∂ α


∂ Δp
∂ σ
⋅σ ,α

∂ Δp
∂ p
⋅p ,α

∂ Δp
∂ ε  Δu 

⋅ε  Δu  ,α
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Moreover, in agreement with the algorithmic integration of the law, we will separate parts deviatoric and
hydrostatic. 

{
Δσ ,α∣Δu≠Δu α  =

∂ Δ σ
∂α


1
3
⋅
∂Tr  Δσ 
∂α

⋅Id


∂ Δ σ
∂ σ

⋅σ ,α
1
3
⋅
∂Tr  Δσ 
∂ σ

⋅Id⋅σ ,α


∂ Δ σ
∂ p

⋅p ,α
1
3
⋅
∂Tr  Δσ 
∂ p

⋅Id⋅p ,α

Δp ,α∣Δu≠Δu α  =
∂Δp
∂α


∂ Δp
∂σ
⋅σ ,α

∂ Δp
∂ p
⋅p ,α

 

And thus, one calculates:

∂ Δσ
∂α

 

  
Insofar as one does not have dependence clarifies Δ σ  compared to α  , one obtains: 

∂ Δ σ
∂ α

=0 .  

 
∂Tr  Δσ
∂ α

=0 .  

∂ Δσ
∂σ

 

∂ Δ σ
∂ σ

=−3μ⋅

∂ Δp
∂ σ

σeq
e

⊗ σ e3μ⋅
Δp

σ eq
e2
⋅
∂ σeq

e

∂ σ
⊗ σe−3μ⋅

Δp

σeq
e
⋅J  

  
where J  is the operator deviatoric. 

∂Tr Δσ 
∂ σ

=−9K⋅Α⋅
∂ Δp
∂ σ

 

∂ Δσ
∂ p

 

∂ Δ σ
∂ p

=−
3μ

σeq
e ⋅
∂ Δp
∂ p

⋅σ e
 

∂Tr Δσ 
∂ p

=−9⋅K⋅Α⋅
∂ Δp
∂ p

 

Δp ,α  
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The fact is used that: σΔσ eq=σΔσ eq
e
−3µ⋅Δp  

Δp , α=
1

3µ
⋅σΔσ eq

e
,α−σΔσ eq

,α
−
∂ 3µ
∂ α
⋅Δp   

One will refer again to the remark at the end of [§ 4.1.2.5] for the sizes whose calculation was not here
detailed.

4.2.2.5 Calculation of the derivative of displacement

Once Δ σ ,α∣Δu≠Δu α   calculated, one can constitute the second member R ,α∣Δu≠Δ u α   . One then
solves the system [éq 4.2.2.1 - 1] and one obtains the increment of derived displacement compared to
  . 

4.2.2.6 Calculation of the derivative of the other sizes

Now that one has  Δu ,α  , one must calculate the derivative of the other sizes. One separates two
more cases: 

Linear elasticity
According to [éq 4.2.2.3 - 1], one as follows calculates the derivative of the increment of constraint:

Δ σ ,α=0 .2μ . ε Δ u ,α K .Tr ε  Δu ,α . Id  

The increment of cumulated plastic deformation, as for him, does not see evolution:

Δp ,α=0  

Elastoplasticity of the type Drucker Prager
 If Δp=0  , the preceding case is found. 
If not, one obtains:

Δσ ,α=Δσ ,α∣Δu≠Δuα 
∂ Δσ
∂ ε  Δu 

:ε  Δu ,α   

And for the cumulated plastic deformation:

Δp , α=
1

3µ
⋅σΔσ eq

e
,α−σΔσ eq

,α
−
∂ 3µ
∂ α
⋅Δp   

Once all these calculations are finished, all the derived sizes are reactualized and one passes to the
step of load according to.

4.2.2.7 Synthesis

To summarize  the preceding paragraphs,  one represents the  various  stages  of  calculation by  the
following diagram:
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5 Features and checking

The law of behavior can be defined by the keywords  DRUCK_PRAG and DRUCK_PRAG_N_A for the
non-aligned version (order  STAT_NON_LINE,  keyword factor  BEHAVIOR).  They are associated with
materials DRUCK_PRAG and DRUCK_PRAG_FO (order DEFI_MATERIAU).

The law HOEK_BROWN is checked by the cases following tests:

SSND104 [V6.08.104] Validation of the behavior DRUCK_PRAG_N_A

SSNP124 [V6.03.124] Biaxial  test  drained with  a  behavior  DRUCK_PRAGER polishing
substance

SSNP125 Non-existent
documentation

Validation  of  the  option  INDL_ELGA for  the  behavior
DRUCK_PRAGER

SSNV168 [V6.04.168] Triaxial  compression  test  drained  with  a  behavior
DRUCK_PRAGER polishing substance

WTNA101 [V7.33.101] Triaxial  compression  test  not-drained  with  a  behavior
DRUCK_PRAGER polishing substance

WTNP114 [V7.32.114] Case  test  of  reference  for  the  calculation  of  the  mechanical
deformations

  
The tests according to specifically check the calculation of sensitivity to the parameters of the law:

SENSM12 [V1.01.190] Plate  under  pressure  in  plane  deformations  (plasticity  of
DRUCK_PRAGER)

SENSM13 [V1.01.192] Triaxial compression test with the model of the type 3D

SENSM14 [V1.01.193] Cavity 2D calculation of sensitivity (Law DRUCK_PRAGER)
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Annexe 1 Calculation of the derivative partial of
 p

A1.1 Calculation of the derivative partial of the increment of plastic
deformation in the case of a linear work hardening
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A1.2 Calculation of  the derivative  partial  of  the increment  of  plastic
deformation in the case of a parabolic work hardening
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A1.3 Case of projection at the top of the cone

The principle  of  the  analytical  resolution  consists  in  determining  the  effective  constraints  like  the
projection of the elastic constraints on the criterion.

It may be that there is no solution.

If the condition 
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