Operator CALC_MODE_ROTATION

1 Goal

To calculate the modes and the frequencies of the system following according to the number of revolutions,

\[M \ddot{\delta} + (C + \Omega G) \dot{\delta} + K \delta = 0 \]

Where \(M \) is the matrix of mass of the system, \(C \) is a matrix of damping, \(G \) is the matrix of gyroscopy (antisymmetric), and \(K \) is the matrix of stiffness of the system. \(\Omega \) represents the number of revolutions.

The data necessary for this macro are:
1) matrices: \(K, C, G \) and \(M \)
2) A list number of revolutions

This operator returns a list of concept \texttt{mode_meca_c}: a concept for each number of revolutions. She calls on the order \texttt{CALC_MODES}.
2 Syntax

```
CALC_MODE_ROTATION (  
  # Matrix of rigidity  
  ♦ MATR_RIGI = K [matr_asse_depl_r]  
  # Matrix masses  
  ♦ MATR_MASS= M [matr_asse_depl_r]  
  # Matrix damping  
  ♦ MATR_AMOR = C [matr_asse_depl_r]  
  # Gyroscopic matrix  
  ♦ MATR_GYRO = G [matr_asse_depl_r]  
  # List number of revolutions  
  ♦ VITE_ROTA = List [R]  
  # Choice of the method  
  ♦ METHOD = / 'QZ' [DEFECT]  
    / 'SORENSEN'  
  # Type of modal calculation  
  ◇ CALC_FREQ = _F (  
    ◇ OPTION = / 'CENTER'  
      / 'PLUS_PETITE' [DEFECT]  
    ◇ NMAX_FREQ = nbF [I]  
    ◇ SEUIL_FREQ= /1.E-2 [DEFECT]  
      /f_seuil [R]  
  )  
  # For final checks  
  ◇ VERI_MODE = _F (  
    ◇ STOP_ERREUR = / 'YES' [DEFECT]  
      / 'NOT'  
    ◇ THRESHOLD = / 1.E-6 [DEFECT]  
      / R [R]  
    ◇ PREC_SHIFT = / 0.05 [DEFECT]  
      / prs [R]  
    ◇ STURM = / 'YES' [DEFECT]  
      / 'NOT'  
  );
```
3 Operands

3.1 Operands MATR_RIGI/MATR_MASS/MATR_AMOR/MATR_GYRO/INFORMATION/METHOD/OPTION

They have the same meaning as in the order CALC_MODES [U4.52.02].

Note: Because of presence of the matrices of damping and gyroscopy, only methods QZ and SORENSSEN are usable.

3.2 Keyword CALC_FREQ

Play the same part as in the order CALC_MODES [U4.52.02], has the same internal keywords with the same values by default.

Note: The number of modes nbF is the same one for all the number of revolutions.

3.3 Operand VITE_ROTA

List number of revolutions Ω in rad/s.

3.4 Operand Keyword VERI_MODE

The internal operands have the same meaning as in of the same keyword name of order CALC_MODES [U4.52.02].

4 Example

Calculation of the first 5 modes in rotation by using the method QZ:

```
Lmod=CALC_MODE_ROTATIONNR (MATR_RIGI = RIGIDITY,
MATR_MASS = MASS,
MATR_AMOR = AMOR,
MATR_GYRO = GYASS,
VITE_ROTA = L_VITROT,
METHOD = 'QZ',
CALC_FREQ = F (OPTION=' PLUS_PETITE', NMAX_FREQ=5),
VERI_MODE = F (STOP_ERREUR=' NON'));
```

CALC_MODE_ROTATION return a table (table_contenor) containing the modal bases calculated for each number of revolutions.

mode_meca_c product are named as follows: mod_0,... mod_i. .mod_nbV, i is the index number of revolutions in VITE_ROTA.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.