Operator REST_REDUIT_COMPLET

The goal of the operator is to rebuild the solutions on a complete model starting from a scale model.

The operator rebuilds one evol_ther or one evol_noli starting from an empirical base (see [U4.67.01], Operator DEFI_BASE_REDUITE) and of the result of a reduced calculation.
Contents

1 Syntax .. 3
2 Operands .. 4
 2.1 Operands PHENOMENON and MODEL ... 4
 2.2 Operands BASE_PRIMAL ... 4
 2.3 Operands REST_DUAL .. 4
 2.3.1 Operands BASE_DUAL ... 4
 2.3.2 Operands CORR_COMPLET ... 4
 2.3.3 Operands GROUP_NO_INTERF ... 4
 2.4 Operands RESULTAT_REDUIT .. 4
 2.4.1 Operands TABL_COOR_REDUIT ... 5
 2.5 Structure of output data .. 5
1 Syntax

ev = REST_REDUIT_COMPLET (
 ♦ PHENOMENON = '/MECHANICAL' [DEFECT]
 ♦ 'THERMAL'
 ♦ MODEL = model [modele_sdaster]
 ♦ RESULTAT_REDUIT = base2, [resultat_sdaster]
 ♦ BASE_PRIMAL = baseprim, [modele_empI]
 ◇ REST_DUAL = '/NOT', [DEFECT]
 '/YES',
 # if REST_DUAL=' OUI'
 ♦ BASE_AL = base dual, [mode_empi]
 ♦ GROUP_NO_INTERF = grno, [grno]
 ◇ CORR_COMPLET = '/NOT' [DEFECT]
 '/YES'
 ◇ TABL_COOR_REDUIT = tabl_coor, [table]
 ◇ TITLE = title, [l_Kn]
 ◇ INFORMATION = /1, [DEFECT]
 /2,
2 Operands

2.1 OperandS PHENOMENON and MODEL

♦ PHENOMENON = /'MECHANICAL'/ [DEFECT]

PHENOMENON = /'THERMAL'/

Type of treated phenomenon: mechanics or thermics. The choice of the phenomenon will typify the structure of output data: evol_ther for THERMICS or evol_noli for MECHANICS.

♦ MODEL = model [modele_sdaster]

NRom of the model on which will be rebuilt the structure of data result.

2.2 OperandS BASE_PRIMAL

♦ BASE_PRIMAL = baseprim, [mode_empi]

The primal base will use to rebuild the primal fields: DEPL for mechanics and THER for thermics. It is necessary that this base was built on the model given by the keyword MODEL.

2.3 Operand REST_DUAL

◊ REST_DUAL = /'NOT'/, [DEFECT]

/'YES'/,

By defaults, the duaux fields are not restored (REST_DUAL= 'NON').

Keywords BASE_DUAL and GROUP_NO_INTERF are necessary to restore the duaux fields.

2.3.1 Operand BASE_DUAL

♦ BASE_AL = base dual, [mode_empi]

The dual base is necessary to rebuild the duaux fields: SIEF_NOEU for mechanics and FLUX_NOEU for thermics. It is necessary that this base was built on the model given by the keyword MODEL.

2.3.2 Operand CORR_COMPLET

◊ CORR_COMPLET = /'NOT' [DEFECT]

/'YES'/

When one did a calculation with correction finite element (see [U4.51.03]), the use of this keyword makes it possible to improve quality of the fields.

2.3.3 Operand GROUP_NO_INTERF

♦ GROUP_NO_INTERF = grno, [grno]

Group of nodes defining the interface the reduced field and the rest of the model.

2.4 Operand RESULTAT_REDUIT

♦ RESULTAT_REDUIT = base2, [resultat_sdaster]
This keyword gives the structure of data result (evol_ther or evol_noli) who comes from the
calculation reduced with THER_NON_LINE or STAT_NON_LINE. This structure of data contains all the
necessary information to rebuild the results on model given by the keyword MODEL.

2.4.1 Operand TABL_COOR_REDUIT

◊ TABL_COOR_REDUIT = tabl_coor ,

Lorsqu’ one carry out a gappy-POD by REST_REDUIT_COMPLET, it is necessary to have the reduced
coordinates of calculation. These coordinates are stored in a structure of data table of name
‘COOR_REDUIT’ who is attached to structure of data result. One can recover it via the operator
RECU_TABLE. For example:

coorredp=RECU_TABLE (CO=resunl, NOM_TABLE=' COOR_REDUIT')

But if you recover the empirical base previously calculated by an operator like LIRE_RESU (in
particular with format MED), this table is not available. The operator TABL_COOR_REDUIT thus allows
to give it to REST_REDUIT_COMPLET.

It is thus necessary to have saved this table upstream at the same time as the non-linear result (by
one IMPR_TABLE), then to recover it (by one LIRE_TABLE) to give it to REST_REDUIT_COMPLET.

2.5 Structure of output data

The structure of output data is one sd_resultat standard of code_aster. It is complete for a
resumption of calculation in thermics, on the other hand, in mechanics, it will miss the field of internal
variables (VARI_ELGA). It will thus be necessary to supplement calculation with ETAT_INIT/VARI
in STAT_NON_LINE.