Operator **CALC_CHAM_ELEM**

1 Goal

To calculate an elementary field at the points of Gauss containing the coordinates and the weight of the points of Gauss.

To calculate an elementary field of heat flux and acoustic pressure, starting from already calculated fields of type `cham_no_*`. 

---

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
2 Syntax

chamel [cham_elem_*] = CALC_CHAM_ELEM

( ♦ MODEL = Mo, [model]
◇ CARA_ELEM = carac, [cara_elem]
◇ ACCE = acce , [cham_no]
◇ INST = / inst, [R]
       / 0., [DEFECT]

# Selection of the meshes concerned with calculation
◇ / ALL= 'YES', [DEFECT]
/ GROUP_MA = l_grma, [l_gr_maille]

# thermal options:
/ OPTION = / 'FLUX_ELNO',
/ 'FLUX_ELGA',
  ♦ TEMP = temp, [cham_no_TEMP_R]
  ♦ CHAM_MATER = chmater, [cham_mater]
  ♦ MODE_FOURIER = / nh, [I]
  / 0, [DEFECT]

# acoustic options:
/ OPTION = / 'PRAC_ELNO',
  ♦ CLOSE = near, [cham_no_PRAC_R]

# calculation of the coordinates and the weights of the points of Gauss
/ OPTION= 'COOR_ELGA',
);

# type of produced field: [ cham_elem_* ] with:
If OPTION: then [*] - >

# thermal options:
FLUX_ELGA
FLUX_ELNO
FLUX_R

# acoustic options:
PRAC_ELNO
PRAC_R

# other options
COOR_ELGA
GEOM_R
3 Operands

3.1 Operands MODEL / CARA_ELEM

♦ MODEL = \( M_o \),
   
   Name of the model on which the option is calculated.

◊ CARA_ELEM = \( c_carac \),
   
   Elementary characteristics associated with the model \( M_o \), if it contains elements of structure or if the isoparametric elements are affected of a local reference mark of anisotropy.

3.1 Selection of the meshes concerned with calculation

Keywords \( \text{ALL} = \text{YES} \) and \( \text{GROUP\_MA} \) allow the user to choose the meshes on which it wishes to do his elementary calculations of postprocessing.

/ \( \text{ALL} = \text{YES} \)

All the meshes (carrying finite elements) will be treated. It is the value by default.

/ \( \text{GROUP\_MA} = l\_grma \)

Only meshes included in \( l\_grma \) will be treated.

3.2 Operands ACCE / INST

◊ ACCE
   
   Unutilised keyword which starts the following error message:

   To take into account the terms of inertia, it is preferable to use the order CALC\_CHAMP. The keyword ACCE is not treated and the results are likely to be false.

◊ INST
   
   Value of the moment allowing to evaluate possible functions in the parameters materials for the calculation of the heat flux.

3.3 Thermal options

The options of elementary calculation in thermics can be calculated starting from a field of temperature:

♦ TEMP = \( \text{temp} \)
   
For these calculations one needs the material field associated with the model \( M_o \):

♦ CHAM\_MATER = \( \text{chmater} \),

The options available are:

| ‘FLUX\_ELGA’,  |
| ‘FLUX\_ELNO’,  |

Their significance is given in [U4.81.04].

In the case as of modelings AXIS\_FOURIER and PLAN\_FOURIER, one can specify the number of harmonic by the keyword : \( \text{MODE\_FOURIER} \).

3.4 Acoustic options

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
The options of elementary calculation in acoustics can be calculated starting from a complex field of pressure:

♦ CLOSE = near

The option available is:

| ‘PRAC_ELNO’

Calculation of the real and imaginary parts of the field of pressure by element to the nodes.

3.5 Option COOR_ELGA

Calculation of the coordinates and the weights of the points of Gauss of each element.

4 Examples of calculations with CALC_CHAM_ELEM

4.1 Flow with the nodes starting from the field of temperature temp as an axisymmetric FOURIER mode 1

epsno = CALC_CHAM_ELEM

```plaintext
{  MODEL = moaxfour,  TEMP = temp,
   CHAM_MATER= chmater,
   OPTION = ‘FLUX_ELNO’,  MODE_FOURIER = 1,
}
```

---

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience. 
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)