Operator CALC_EUROPLEXUS

1 Goal

This operator allows to prepare of a Europlexus study since a command file Code_Aster.

The order CALC_EUROPLEXUS allows to define a Europlexus study for a later execution. The command files Europlexus are prepared starting from the arguments of the concepts Aster.

There is no produced result object. The input files for Europlexus are written in the repertoire REPE_OUT.

Notice

It is necessary to specify the keyword DEBUG=_F (HIST_ETAPE=' OUI') in BEGINNINGCONTINUATION to use this macro-order.
2 Syntax

evol = CALC_EUROPLEXUS (

 ♦ / NOM_CAS = name,
 = 'study',
 [TXM]
 [DEFECT]

 ♦ / MODEL = Mo,
 [model]
 CARA_ELEM = carac,
 [cara_elem]
 CHAM_MATER = chmat,
 [cham_mater]

 / ETAT_INIT = _F (
 ♦ RESULT = evolno
 [evol_noli]
 ♦ CONSTRAINT = / 'NOT'
 [DEFECT]
 / 'YES'
 [TXM]
 # so FORCED = 'YES':
 ♦ VARI_INT = / 'NOT'
 [DEFECT]
 / 'YES'
 [TXM]
 ♦ SPEED = / 'NOT'
 [DEFECT]
 / 'YES'
 [TXM]
 # so FORCED = 'NOT':
 ♦ NITER = / 1
 [DEFECT]
 / niter [I]
 ♦ BALANCE = / 'YES'
 [DEFECT]
 / 'NOT'
 [TXM]
),

 ♦ BEHAVIOR = _F (
 ♦ RELATION = 'ELAS'
 [DEFECT]
 = 'GLRC_DAMAGE'
 [TXM]
 = 'VMIS_ISOT_TRAC'
 [TXM]
 = 'VMIS_JOHN_COOK'
 [TXM]
 = 'BPEL_FROT'
 [TXM]
 ♦ GROUP_MA = l_grma
 [l_gr_GROUP_MA]
),

 ♦ FONC_PARASOL = _F (
 | ♦ NFKT = nfkt
 [fonction_sdaster]
 | ♦ NFKR = nfkr
 [fonction_sdaster]
 | ♦ NFAT = nfat
 [fonction_sdaster]
 | ♦ NFAR = nfar
 [fonction_sdaster]
 ♦ GROUP_MA = gma
 [l_gr_GROUP_MA]
),

 ♦ EXCIT = _F (
 ♦ LOAD = cho,
 [char_meca]
 ♦ FONC_MULT = fi,
 [function/formula]
),

 ♦ CALCULATION = _F (
 ♦ / TYPE_DISCRETISATION = 'CAR'
 [DEFECT]
 ♦ CSTAB = / 0.3
 [DEFECT]
 / cstab, [R]

 / TYPE_DISCRETISATION= 'UTIL'
 [TXM]
 ♦ PASFIX = pasfix
 [R]
 ♦ INST_INIT = tini
 [R]
 ♦ INST_FIN = tfin
 [R]
 ♦ NMAX = nmax
 [R]
),

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
DAMPING = _F (
 ♦ TYPE_AMOR = 'QUASI_STATIQUE', [DEFECT]
 ♦ FREQUENCY = freq, [R]
 ♦ COEF_AMOR = amor, [R]
 ♦ INST_DEB_AMOR = instd, [R]
 ♦ INST_FIN_AMOR = instf, [R]
),

OBSERVATION = _F (
 ♦ NOM_CHAM = / 'DEPL', [DEFECT]
 / 'QUICKLY', [TXM]
 / 'ACCE', [TXM]
 / 'SIEF_ELGA', [TXM]
 / 'EPSI_ELGA', [TXM]
 / 'VARI_ELGA', [TXM]
 / PAS_INST = pas_inst [R]
 / PAS_NBRE = pas_nbre [I]
 / INST = l_inst [listr8]
 / NUME_ORDRE = l_num [l_I]
),

FILING = _F (
 ♦ / PAS_INST = pinst [R]
 / PAS_NBRE = pnbre [I]
 / INST = l_inst [listr8]
 / NUME_ORDRE = l_num [l_I]
),

CURVE = _F (
 ♦ UNITE_ALIT = ualit [I]
 ♦ NOM_CHAM = ncham [TXM]
 ♦ NOM_CMP = ncmp [TXM]
 ♦ / GROUP_NO = node [l_gr_noeud]
 / GROUP_MA = grma [l_gr_GROUP_MA]
 / NUM_GAUSS = N [I]
 / PAS_INST_COURBE = picourbe [R]
 / PAS_NBRE_COURBE = pncourbe [I]
 / INST_COURBE = l_inst [listr8]
 / NUME_ORDRE_COURBE = l_num [l_I]
),

FIELDS = _F (
 ♦ GROUP_MA = dom_gma [l_gr_maille]
 ♦ IDENTIFIER = dom_id [I]
),

INTERFACES = _F (
 ♦ GROUP_MA_1 = int_gma1 [l_gr_maille]
 ♦ GROUP_MA_2 = int_gma2 [l_gr_maille]
 ♦ SHEET = sheet [R]
 ♦ IDENT_DOMAINE_1 = int_dom1 [I]
 ♦ IDENT_DOMAINE_2 = int_dom2 [I]
),
◊ INFORMATION = / 1,
 / 2, [DEFECT]
 [I]
3 Restrictions of use

CALC_EUROPLEXUS defines a Europlexus study. For that, it uses, not only concepts, but too keywords indicated in some of the preceding orders (AFFE_CARA_ELEM, AFFE_CHAR_MEC...,).
For that, it is necessary to add the keyword DEBUG=_F (HIST_ETAPE='OUI') in BEGINNING or CONTINUATION.

For the same reason, it is obligatory that these orders “relationships” are defined in the command set on the same level as CALC_EUROPLEXUS (and not in one INCLUDE for example).

Lastly, the assignments in these same orders must be made by groups of meshes (keywords GROUP_MA*) and not by meshes.

4 Operands

4.1 Operand NOM_CAS

The input files for Europlexus are written in REPE_OUT in the temporary repertoire of the execution. To recover this repertoire at the end of the calculation, it should be indicated in AsterStudy with Set-up directories or in astk with the type repe at exit.

To prepare several settings in data, the file names are built starting from this keyword: commandes_ + NOM_CAS.
By default, NOM_CAS is worth study.

4.2 Opérandes MODEL/CHAM_MATER/CARA_ELEM

♦ / MODEL = Mo,
 CARA_ELEM = carac,
 CHAM_MATER = chmat,

These keywords make it possible to inform:

- the name of the model (Mo) whose elements are the object of mechanical calculation. Only mechanical calculations are authorized, and for modelings Q4GG, BARS (section GENERAL in AFFE_CARA_ELEM), POU_D_E (rectangular section and circular in AFFE_CARA_ELEM), 3D (mesh HEXA8 and TETRA4), 3D_SI (mesh HEXA8), DIS_T and DIS_TR.
- the name of the material field (chmat) affected on the grid. Attention, all the groups of meshes of the model must be associated with a material.
- the name of the characteristics (carac) elements of hull, beam, pipe, bars, cable, and discrete elements affected on the model Mo. This operand is not obligatory if no element of the model needs some (ex: 3D).

4.3 Keyword ETAT_INIT

♦ / ETAT_INIT = _F (♦ RESULT = resu,
♦ CONSTRAINT
♦ VARI_INT
♦ SPEED
♦ NITER
♦ BALANCE

Warning : The translation process used on this website is a “Machine Translation”. It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
This keyword makes it possible Europlexus to begin calculation starting from an initial state resulting from a concept result of Code_Aster. The fields provided to Europlexus are those corresponding to the last moment of calculation of the concept result given.

The field of displacement is transmitted in all the case. Field speed can be transmitted in the case of a dynamic initial state \((\text{SPEED} = \text{‘YES’})\), but even in this case, the field of acceleration is not transmitted because it is useless with EPX which calculates it automatically.

Note:

One recovers the model, the field of material and the elementary characteristics of the concept result.

4.3.1 Operand \(\text{RESULT}\)

\(\star\) \(\text{RESULT}\)

Concept result providing the grid and the fields of displacements and constraints which will be used as initial state in Europlexus.

4.3.2 Operand \(\text{CONSTRAINT}\)

\(\diamond\) \(\text{CONSTRAINT}\)

If \(\text{CONSTRAINT} = \text{‘OUI’}\), the stress field \(\text{SIEF_ELGA}\) fact part of the initial state, if not only the field of displacement is given, the initial constraints are then calculated starting from displacements by Europlexus.

Only modelings \(\text{BAR, Q4GG, 3D and 3D_SI}\) are compatible with \(\text{CONSTRAINT} = \text{‘OUI’}\).

Contrary to the other elements, for \(\text{3D_SI}\), the Code_Aster models and EPX not being completely the same ones, an initial state balanced in Code_Aster will not be it in EPX. The functionality is all the same to activate but it is necessary in this case to activate the keyword \(\text{EQUI}\).

4.3.3 Operand \(\text{VARI_INT}\)

\(\diamond\) \(\text{VARI_INT}\)

If \(\text{VARI_INT} = \text{‘OUI’}\), a field of internal variables \(\text{VARI_ELGA}\) fact part of the initial state. This field is not null solely on the affected meshes of a behavior for which a transformation of the internal variables of Code_Aster towards EPX is developed. Messages of alarms prevent when internal variables put at zero are sent to EPX and when the field of internal variables is null on all the meshes of the model (this last specifying whereas the use of the operand is without effect).

This operand is available only if \(\text{CONSTRAINT} = \text{‘YES’}\).

4.3.4 Operand \(\text{VITESSE}\)

\(\diamond\) \(\text{VITESSE}\)

If \(\text{VITESSE} = \text{‘OUI’}\), field of vitess \(\text{VITE}\) fact part of the initial state who is thus dynamic.

This operand is available only if \(\text{CONSTRAINT} = \text{‘YES’}\).

4.3.5 Operand \(\text{NITER}\)

If \(\text{CONSTRAINT} = \text{‘NON’}\), this operand indicates to Europlexus in how much stages (not of time) to recompute the constraints starting from displacement. During this calculation initial displacement given is regarded as an imposed displacement. At the stage \(i=1,\ldots,\text{niter}\), imposed displacement is multiplied by \(\frac{i}{\text{niter}}\).

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
4.3.6 **Operand BALANCE**

◊ BALANCE

When a result is transferred from a computer code to another, it often happens that a state balanced in the first code is not it completely any more in the second. To avoid that, Europlexus lays out of a functionality to balance perfectly an initial state by adding what it is necessary for the external forces. This functionality will be activated if one gives EQUILIBRE='OUI' (value by default).

4.4 **Keyword BEHAVIOR**

◊ BEHAVIOR = _F (
◇ RELATION = ‘ELAS’ [DEFECT]
 = ‘GLRC_DAMAGE’ [TMX]
 = ‘VMIS_ISOT_TRAC’ [TMX]
 = ‘VMIS_JOHN_COOK’ [TMX]
 = ‘BPEL_FROT’ [TMX]

◇ GROUP_MA = l_grmA [l_gr_GROUP_MA]

On the model of the operators STAT_NON_LINE and DYNA_NON_LINE, the keyword BEHAVIOR allows to assign a behavior to the groups of meshes modelled in calculation.

The only behaviors available are ‘ELAS’, ‘GLRC_DAMAGE’, ‘VMIS_ISOT_TRAC’, ‘VMIS_JOHN_COOK’ and ‘BPEL_FROT’. They are indicated by the keyword RELATION.

4.5 **Keyword FONC_PARASOL**

◊ FONC_PARASOL

This keyword makes it possible to define the functions of stiffness, and damping, translation and rotation of the elastic supports definite in the keywords factors RIGI_PARASOL and DISCRETE order AFFE_CARA_ELEM.

It is possible to combine at the same time a carpet of springs of ground with a carpet of shock absorbers (standard dashpots). Within this framework, one can mix descriptions: for example to couple springs $K_{TR_D_N}$ with 6 components, of which stiffnesses of rotation, with shock absorbers of the type $A_{TR_D_N}$.

In Europlexus, the damping coefficients in rotation are worth then implicitly 0.

Of course, homogeneous descriptions on the level of the degrees of freedom, type $K_{TR_D_N}$ with $A_{TR_D_N}$ or $K_{T_D_N}$ with $A_{T_D_N}$ are also authorized. In all the cases, the arguments which follow (NFKT , NFKR , NFAT and NFAR) must be specified in coherence with the degrees of freedom of stiffness and damping.

4.5.1 **Operand NFKT**

◊ NFKT

Allows to define the function of translation of the stiffnesses following the total axes.

4.5.2 **Operand NFKR**

◊ NFKR

Allows to define the function of rotation of the stiffnesses following the total axes.

4.5.3 **Operand NFAT**
4.5.4 Operand NFAR

- NFAR

Allows to define the function of rotation of following depreciation the total axes.

4.5.5 Operand GROUP_MA

- GROUP_MA

Inform the groups of meshes to which the various functions declared in the occurrence of the keyword factor will be affected.

Note:

- So elementary characteristics are declared on a group of meshes by the keyword DISCRETE of AFFE_CARA_ELEM then this group of meshes must necessarily appear in this operand for one of the occurrences of FONC_PARASOL.
- So springs of ground are declared on a group of meshes by the operand GROUP_MA_POI1 keyword RIGI_PARASOL of AFFE_CARA_ELEM then this group of meshes must necessarily appear in this operand for one of the occurrences of FONC_PARASOL.

4.6 Keyword EXCIT

- EXCIT

This keyword factor makes it possible to define a load in each occurrence. These loads result from the operator AFFE_CHAR_MECA.

4.6.1 Operand LOAD

- LOAD

Types of loads taking into account by CALC_EUROPLEXUS are the following ones:

- DDL_IMPO: it makes it possible to declare displacements imposed. If they are blockings, it is preferable not to associate a multiplying function with this loading. Thus information will be translated by the connection "BLOQ" EPX, which makes it possible to treat all the ddls in the same occurrence. If a multiplying function is then associated the loading will be represented by the connection "DEPL" EPX, it can then have one keyword by occurrence there among DX, DY, DZ, DRX, DRY, MARTINI, DRZ. To represent a displacement imposed other that a blocking, it is obligatory to associate a multiplying function with the loading.

- FORCE_COQUE/PRES: pressure on a hull, one must obligatorily associate with this kind of load with a multiplying coefficient (keyword FONC_MULT). Other keywords of FORCE_COQUE are not authorized.

- RELA_CINE_BP: relations kinematics resulting from the macro-order DEFI_CABLE_BP, defines connections between degrees of freedom of concrete and cables.

- PRES_REP/PRES: pressure on faces of elements 3D, one must obligatorily associate with this kind of load with a multiplying coefficient (keyword FONC_MULT). Other keywords of PRES_REP are not authorized. Attention, in Code_Aster this loading is authorized on hulls but this use in CALC_EUROPLEXUS will lead to an error of calculation EPX.

- FORCE_NODALE: allows to declare forces nodal in the same way as for a calculation with the other operators of Code_Aster. As for DDL_IMPO, one can declare one keyword among FX, FY,
FZ, MX, MY and MZ. One must obligatorily associate with this kind of load with a multiplying coefficient (keyword `FONC_MULT`).

- `LIAISON_MAIL`: so that `CALC_EUROPLEXUS` can treat this connection, it is imperative to specify `LIAISON_EPX='OUI'` with `AFFE_CHAR_MECA`.

4.6.2 Operand `FONC_MULT`

◊ `FONC_MULT`

Multiplying function of the time of the loading defined by the current occurrence of the keyword factor `EXCIT`.

4.7 Keyword `CALCULATION`

♦ `CALCULATION`

This keyword factor makes it possible to choose the parameters of calculation to be used.

4.7.1 Operand `TYPE_DISCRETISATION`

♦ `TYPE_DISCRETISATION = 'CAR'`, [DEFECT]

`'UTIL'`,

Allows to choose between an automatic discretization in time (`'CAR'`, it is then necessary to specify `CSTAB`) and a discretization imposed by the user (`'UTIL'`, it is then necessary to specify `PASFIX`). `INST_INI` and `INST_FIN` specify initial and final time calculation.

4.7.2 Operand `CSTAB`

♦ `CSTAB = / 0.3, [DEFECT]

`/ cstab`,

Coefficient safety taken during the step of time of stability estimated (i.e. critical) for each element. The value by default is of `0.3`.

4.7.3 Operand `PASFIX`

♦ `PASFIX`

This parameter is a short cut making it possible to assign a step of fixed time user. Must be used in conjunction of `TYPE_DISCRETISATION = UTIL`.

4.7.4 Operand `INST_INIT`

♦ `INST_INIT`

Initial moment of calculation. In the case of a calculation of recovery, this parameter is ignored (it can however be left), because the new value of initial time is read in the file of recovery.

4.7.5 Operand `INST_FIN`

♦ `INST_FIN`

Final moment of calculation.
4.8 Keyword DAMPING

♦ DAMPING

This keyword factor makes it possible to add damping to calculation EPX.

4.8.1 Operand TYPE_AMOR

♦ TYPE_AMOR = 'QUASI_STATIQUE', [DEFECT]

Allows to choose the type of desired damping. For the moment only the value ‘QUASI_STATIQUE’ is available.

4.8.2 Operand FREQUENCY

♦ FREQUENCY

The frequency of damping defines.

4.8.3 Operand COEF_AMOR

♦ COEF_AMOR

Defines the damping coefficient.

4.8.4 Operands INST_DEB_AMOR and INST_FIN_AMOR

♦ INST_DEB_AMOR
♦ INST_FIN_AMOR

These two keywords make it possible to give the moment from which damping must be activated and that from which it must cease. These two keywords must be well informed unit, if they are not to it damping will be active throughout calculation.

4.9 Keyword OBSERVATION

Activate the impression in the output file “listing” of EPX of the fields desired on the entities (nodes or elements) asked by the user.

4.9.1 Operand NOM_CHAM

♦ NOM_CHAM

Inform the name of the fields to be written in the listing.

4.9.2 Operands PAS_INST/PAS_NBRE/INST/NUME_ORDRE

♦ / PAS_INST
♦ / PAS_NBRE
♦ / INST
♦ / NUME_ORDRE

Determine the list of the moments for which one wishes posting:

• by frequency defined by the time interval: PAS_INST;
• by many steps of time: `PAS_NBRE`;
• by a list of moments: `INST`;
• by a list of sequence number: `NUME_ORDRE`.

The four keywords can be simultaneously indicated. The list of the selected moments will be then the union of the moments defined by the various keywords.

4.9.3 Operands `GROUP_NO/TOUT_GROUP_NO`

```plaintext
◊ / GROUP_NO
◊ / TOUT_GROUP_NO
```

Determine the nodes for which one wishes to visualize information:
• With certain nodes, through the list defined in a group: `GROUP_NO`;
• For all the groups of nodes of the grid: `TOUT_GROUP_NO`.

4.9.4 Operands `GROUP_MA/TOUT_GROUP_MA`

```plaintext
◊ / GROUP_MA
◊ / TOUT_GROUP_MAILLE
```

Determine the meshes for which one wishes to visualize information:
• On certain meshes, through the list defined in a group: `GROUP_MA`;
• For all the groups of meshes of the grid: `TOUT_GROUP_MA`.

4.10 Keyword `FILING`

Allows to select the moments for which one wishes that the results be filed in the file with format MED written by EPX. It is starting from this file that is rebuilt the Aster result. The recovery of this information is rather expensive, it is advised to file only the moments strictly necessary for the postprocessing or the continuation of calculation.

4.10.1 Operands `PAS_INST/PAS_NBRE/INST/NUME_ORDRE`

See § 4.9.2.

4.11 Keyword `CURVE`

Directive EPX "EXIT GRAP" allows, thanks to its keyword "CURVE", to store in the form of table the values in the course of the time of various sizes, typically a component of a field for a node or a point of Gauss.

4.11.1 Keyword `NOM_CHAM/NOM_CMP`

```plaintext
◊ NOM_CHAM
◊ NOM_CMP
```

Selected field and component.

4.11.2 Operand `GROUP_NO`

```plaintext
◊ GROUP_NO
```

Node which one wishes to store the component of interest. The group of nodes must contain that only one node.
4.11.3 Operands GROUP_MA and NUM_GAUSS

◊ GROUP_MA
◊ NUM_GAUSS

Mesh which one wishes to store the component of interest. The group of mesh should contain only one net.

NUM_GAUSS indicate the number of the point of Gauss of the element post-to be treated. If the element has less points of Gauss than the number required then EPX will fail this stage.

4.11.4 Operand NOM_COURBE

Name of the column concerning the present occurrence of CURVE in the table created. The name should not make more than 16 characters without what it will be truncated.

4.11.5 Operands

PAS_INST_COURBE/PAS_NBRE_COURBE/INST_COURBE/NUME_ORDRE_COURBE

♦ / PAS_INST_COURBE
 / PAS_NBRE_COURBE
 / INST_COURBE
 / NUME_ORDRE_COURBE

These keywords define the moments of filings for the keyword CURVE. Same logic qu is followed ‘in the paragraph 4.9.2.

Note:
All values filed under the keyword CURVE divide the same list of moments of filing.

4.12 Keyword FIELDS

Defines under fields for the studies multi-fields.

4.12.1 Keyword GROUP_MA

◊ GROUP_MA

For each under field it is necessary to have a group of mesh GROUP_MA.

4.12.2 Keyword IDENTIFIER

◊ IDENTIFIER

Each under field defines by its group of meshes, must also have one identifier.

4.13 Keyword INTERFACES

◊ INTERFACES

Defines the interfaces between under fields previously definite.

4.13.1 Keyword GROUPE_MA_1/GROUPE_MA_2

◊ GROUPE_MA_1
◊ GROUPE_MA_2
These two groups of meshes define the edges of the two pennies fields in contact between them.

4.13.2 **Keyword SHEET**

◊ **SHEET**

Specify the tolerance used to pair the nodes of the edges `GROUP_MA_1` and `GROUP_MA_2`.

4.13.3 **Keyword IDENT_DOMAINE_1/IDENT_DOMAINE_2**

◊ **IDENT_DOMAINE_1**
◊ **IDENT_DOMAINE_2**

These two words refer to the respective identifiers of under fields, already specified.

4.14 **Keyword INFORMATION**

◊ **INFORMATION = */ 1, [DEFECT] */ 2,**

Allows to control the level of message of the macro-order.

Note:

- If the keyword `IMPR_MACRO=' OUI'` is present in the order `BEGINNING`, then all orders of the macro-order `CALC_EUROPLEXUS` will be printed in the file of messages.
- The keyword `INFORMATION` is transmitted to all the orders used in the macro-order. `INFORMATION = 2` can thus print much information.
- In all the cases, the command file Europlexus is printed in the file of messages.