ZZZZ298 – Data-processing validation of POST_K1_K2_K3

Summary:

The purpose of this test is to validate in an elementary way the operator POST_K1_K2_K3. This test does not have physical meaning inevitably, it is primarily a data-processing test.

Modeling a:
- Modeling: 3D, crack with a grid (FEM)
- Resolution of a linear elastic mechanical problem

Modeling b:
- Modeling: 3D, crack not-with a grid (X-FEM)
- Resolution of a linear elastic mechanical problem

Modeling C:
- Modeling: C_PLAN, crack with a grid (FEM)
- Resolution of a problem of modal analysis

Modeling D:
- Modeling: AXIS, C_PLAN and D_PLAN, crack with a grid (FEM)
- Resolution of a linear elastic mechanical problem, with variables of order

Modeling E:
- Modeling: D_PLAN, crack not-with a grid (X-FEM)
- Resolution of a linear elastic mechanical problem, with variables of order

Although this test is of data-processing nature and that one can be satisfied with a voluntarily brief documentation, certain modelings are more detailed:
- modeling A and B are documented in a complete way;
- modeling C, resulting from CAS-test SDLS114A, is not documented;
- Lmodeling D, resulting from CAS-test FORMA05A has, is not documented;
- LE modeling E, resulting from CAS-test FORMA06A, is not documented.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
1 Problem of reference for modelings A and B

1.1 Geometry

The studied structure is a cube of edge 1 measures comprising a plane crack, being at middle height (see Figure 1.1-a). If with the problem is dealt by a classical method (modeling A), the crack is with a grid. On the other hand, if method X-FEM is employed (modeling B), the crack is not with a grid, and the geometry is in fact a healthy cube without crack. The crack will then be introduced by functions of levels (level sets) directly into the file orders using the operator \texttt{DEFI_FISS_XFEM} [U4.82.08].

![Figure 1.1-a: Geometry of the fissured cube](image)

1.2 Properties materials

The behavior of the structure is elastic and its properties materials are:

- Young modulus: $E = 205000$ Mpa
- Poisson's ratio: $\nu = 0$

1.3 Boundary conditions and loadings

The displacement of the lower face of the structure are blocked whereas a pressure of $1$ MPa is applied to the higher face in order to simulate a loading of traction. This makes it possible to request the crack in mode of opening $I$ pure.
2 Modeling a: fissures with a grid

In this modeling, the crack is with a grid, and one uses the standard method of the finite elements to carry out calculation.

2.1 Characteristics of the grid

The structure is modelled by a fissured grid composed of 13874 tetrahedrons (see [Figure 2.1-a]).

![Fissured grid](image)

Figure 2.1-a: Fissured grid

2.2 Sizes tested and results

One tests the values of $K_1$ on the first three nodes of the bottom of crack. Indeed, the orientation of the crack implies that $K_1$ could not be calculated on certain nodes. We test the nodes concerned to check that Code_Aster allots the value of the close node nearest to them or the calculation of $K_1$ with been able to be carried out.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of reference</th>
<th>Value of reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>'NON_REGRESSION'</td>
<td>212813.877395</td>
</tr>
<tr>
<td>Node 2</td>
<td>'NON_REGRESSION'</td>
<td>212813.877395</td>
</tr>
<tr>
<td>Node 3</td>
<td>'NON_REGRESSION'</td>
<td>212813.877395</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3 Modeling b: fissures X-FEM

In this modeling, the crack is not with a grid any more, but it is represented by level sets: 

\[ LSN = z - 1/2 \quad \text{and} \quad LST = -y - x/2 + 1. \]

3.1 Characteristics of the grid

The structure is modelled by a grid made up of 15872 tetrahedrons (see [Figure 2.1-a]).

![Healthy grid](image)

Figure 2.1-a: Healthy grid

3.2 Sizes tested and results

One tests the values of \( K_I \) on the second point and the last three points of the bottom of crack. Indeed, the orientation of the crack implies that \( K_I \) could not be calculated on certain points. We test the points concerned to check that Code_Aster their allots the value of the close node nearest or calculation to \( K_I \) with been able to be carried out.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of reference</th>
<th>Value of reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 2</td>
<td>'NON_REGRESSION'</td>
<td>1324885.20838</td>
</tr>
<tr>
<td>Point 22</td>
<td>'NON_REGRESSION'</td>
<td>851382.586304</td>
</tr>
<tr>
<td>Point 23</td>
<td>'NON_REGRESSION'</td>
<td>851382.586304</td>
</tr>
<tr>
<td>Point 24</td>
<td>'NON_REGRESSION'</td>
<td>851382.586304</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.