PERF014 – Contact between two plates in parallel

Summary:

The objective of this CAS-test is to measure the parallel performances of a calculation with a large number of degrees of freedom of contact. It consists of two plates making contact with a rigid foundation.

This case test is declined in 3 quasi-identical modelings. The differences are related to the smoothness of the grids used like with the number of processors:

1) Modeling a: 8900 elements out of 1 processor,
2) Modeling b: 40000 elements out of 4 processors,
3) Modeling C: 63000 elements out of 8 processors.
1 Problem of reference

1.1 Geometry

The geometry of the problem of contact is the following one:

1.2 Properties of material

• $E = 2.1 \times 10^5$ MPa
• $\nu = 0.3$

1.3 Boundary conditions and loadings

Imposed displacement:

- Side faces : $DX = DY = DZ = 0$.
- Foundation : $DX = DY = DZ = 0$.

Pressure imposed on the higher face:

$P = 100$ MPa
2 Reference solution

2.1 Method of calculating

The results of reference are of standard not-regression.

2.2 Sizes and results of reference

Resultant of the efforts according to DZ with embedding.

Maximum displacement on the enforcement zone of the effort of pressure.

2.3 Uncertainties on the solution

Solution of not-regression.
3 Modeling A

3.1 Characteristics of modeling

Modeling is 3D, the formulation of the contact is CONTINUOUS (without friction). The non-linear solver is NEWTON_KRYLOV associated to the iterative linear solver PETSC.

3.2 Characteristics of the grid

Many nodes 14,011
Many meshes 19,665
That is to say:

<table>
<thead>
<tr>
<th>Element Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEG2</td>
<td>940</td>
</tr>
<tr>
<td>QUAD4</td>
<td>9,821</td>
</tr>
<tr>
<td>HEXA8</td>
<td>8,904</td>
</tr>
</tbody>
</table>

3.3 Sizes tested and results

Not-regression.

3.4 Environment of execution

Many processors: 1

<table>
<thead>
<tr>
<th>Machine</th>
<th>Version</th>
<th>Memory (Mo)</th>
<th>Many degrees of freedom</th>
<th>Time execution (STAT_NON_LINE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Allocated</td>
<td>Used</td>
<td>TO USE</td>
</tr>
<tr>
<td>Aster4</td>
<td>11.3.4</td>
<td>512</td>
<td>620</td>
<td>46,325</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
4 Modeling B

4.1 Characteristics of modeling

Modeling is 3D, the formulation of the contact is CONTINUOUS (without friction). The non-linear solver is NEWTON_KRYLOV associated to the iterative linear solver PETSC.

4.2 Characteristics of the grid

Many nodes 61,510
Many meshes 84,225
That is to say:
SEG2 2,124
QUAD4 42,101
HEXA8 40,000

4.3 Sizes tested and results

Not-regression.

4.4 Environment of execution

Many processors: 4

<table>
<thead>
<tr>
<th>Machine</th>
<th>Version</th>
<th>Memory (Mo)</th>
<th>Number DDL</th>
<th>Time execution (STAT_NON_LINE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Allocated</td>
<td>Used</td>
<td>TO USE</td>
</tr>
<tr>
<td>Aster4</td>
<td>11.3.4</td>
<td>2048</td>
<td>1320</td>
<td>205,032</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
5 Modeling C

5.1 Characteristics of modeling

Modeling is 3D, the formulation of the contact is CONTINUOUS (without friction). The non-linear solver is NEWTON_KRYLOV associated to the iterative linear solver PETSC.

5.2 Characteristics of the grid

5.3 Sizes tested and results

Not-regression.

5.4 Environment of execution

Many processors: 8

<table>
<thead>
<tr>
<th>Machine</th>
<th>Version</th>
<th>Memory (Mo)</th>
<th>Many degrees of freedom</th>
<th>Time execution (STAT_NON_LINE) (dryness)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Allocated</td>
<td>Used</td>
<td>TO USE</td>
</tr>
<tr>
<td>Aster4</td>
<td>11.3.4</td>
<td>4096</td>
<td>1714</td>
<td>489.01</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
6 Summary of the results

This benchmark implements a calculation of contact of which the number of potential nodes of contact is approximately 10 % amongst degrees of freedom total. That represents a significant portion compared to what one usually meets in the studies in mechanics of the structures. One shows through 3 modelings the interest of parallel calculation for this kind of problem. Parallelism is made possible for two reasons:

- on the one hand thanks to the elementary approach of the formulation CONTINUOUS and distribution of resulting calculations,
- in addition thanks to the non-linear solvor NEWTON_KRYLOV coupled to a robust parallel iterative solvor.