SDLS02 - Thin plate rhombus embedded at the edge

Summary:

This three-dimensional problem consists in seeking the frequencies of vibration of a mechanical structure made up of a parallelepipedic plate (nonrectangular), embedded on only one side. This test of mechanics of the structures corresponds to a dynamic analysis of a surface model having a linear behavior. It comprises only one modeling.

This problem makes it possible to test the element of plate DKT and the calculation of frequencies of vibration by the method of Lanczos.

The results got on the first two Eigen frequencies are in concord with those of guide VPCS.
1 Problem of reference

1.1 Geometry

![Geometry Diagram]

Side \(a = 1 \, m \), thickness \(t = 0.01 \, m \), \(\alpha = 30^\circ \)

Coordinates of the points (in \(m \)):

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0.</td>
<td>(a)</td>
<td>(a (1 + \sin \alpha))</td>
<td>(a \sin \alpha)</td>
</tr>
<tr>
<td>(y)</td>
<td>0.</td>
<td>0.</td>
<td>(a \cos \alpha)</td>
<td>(a \cos \alpha)</td>
</tr>
<tr>
<td>(z)</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>

1.2 Properties of materials

\[
E = 2.1 \times 10^{11} \, Pa
\]
\[
\nu = 0.3
\]
\[
\rho = 7800. \, kg/m^3
\]

1.3 Boundary conditions and loadings

Side \(AB \) embedded:

for any point \(P \) such as \(y_p = 0 \).

\[
u = v = w = 0.
\]
\[
\theta_x = \theta_y = \theta_z = 0.
\]

1.4 Initial conditions

Without object for the modal analysis.
2 Reference solution

2.1 Method of calculating used for the reference solution

The formula of reference is that given in card SDLS02/89 of the guide VPCS which presents the method of calculating in the following way:

The formulation of M.V. BARTON, for a plate on side, led to:

\[
f_i = \frac{1}{2\pi a^2} \lambda_i^2 \sqrt{\frac{E t^2}{12 \rho (1 - \nu^2)}}
\]

where: \(\lambda_i^2 = g(\alpha) \)

with, for a Poisson's ratio \(\nu = 0.3 \) and \(\alpha = 30^\circ \):

<table>
<thead>
<tr>
<th>(\lambda_i^2)</th>
<th>3,961</th>
<th>10.19</th>
</tr>
</thead>
</table>

- M.V. Barton mentions the sensitivity of the result to the order of the mode and the angle \(\alpha \).
- This reference solution applies to the thin sections such as: \(t / a < 0.1 \).
- Coefficients \(\lambda_i \) were established with a limited development of an insufficient nature.

2.2 Results of reference

The first two clean modes given by:

- the formula of M.V. Barton,
- the average of 5 software packages of calculation by the finite element method.

2.3 Uncertainty on the solution

Semi-analytical solution < 2%.

2.4 Bibliographical references

3 Modeling A

3.1 Characteristics of modeling

DKT

Cutting: 10 on each side of the rhombus is 200 meshes TRIA3.

Limiting conditions:

in all the nodes on the side AB:

DDL.IMPO: (GROUP NO: AB DX: 0., DY: 0., DZ: 0., DRX: 0., DRY MARTINI: 0., DRZ: 0.)

Name of the nodes:
Not A = N1
Bridge B = N11
Not C = N121
Not D = N111

3.2 Characteristics of the grid

Many nodes: 121
Many meshes and types: 200 TRIA3
3.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Order of the mode proper I</th>
<th>Frequency (Hz)</th>
<th>Reference (Barton)</th>
<th>Reference (average of 5 codes)</th>
<th>Aster</th>
<th>% difference averages codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.8987</td>
<td>9.7355</td>
<td>9.8402</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25.4651</td>
<td>23.2745</td>
<td>23.5790</td>
<td>1.31</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Remarks

Calculations carried out by:

```plaintext
CALC_MODES
OPTION = 'PLUS_PETITE'
CALC_FREQ=_F (NMAX_FREQ= 2)
SOLVEUR_MODAL=_F (METHOD = 'TRI_DIAG')
```

3.5 Contents of the file results

the first 2 Eigen frequencies, clean vectors and modal parameters.
4 Summary of the results

Results given by Code_Aster are comparable to the results given by other using computer codes of the formulations different for this plate in the shape from parallelogram.