SHLL101 - Right beam. Harmonic analysis

Summary:

This two-dimensional problem consists in calculating the efforts present in a beam subjected to a traction or an inflection during a harmonic analysis. The reference solution is obtained starting from the discretized equations.

This test comprises two modelings.

For the first modeling, four requests are tested:

- force of traction,
- force of traction and material presenting a damping,
- flexural strength,
- material and flexural strength presenting a damping.

For the second modeling, two requests are tested:

- force of traction,
- force of traction and material presenting a damping.

The second modeling makes it possible to test the complex loadings imposed by the order AFFE_CHAR_MECA_C.
1 Problem of reference

1.1 Geometry

The geometrical characteristics of the beam constituting the mechanical model are the following ones:

Length: \(L = 10 \, m \)

Cross section

\[
\begin{align*}
&IZ = IY = 3.439 \times 10^{-3} \, m^2 \\
&JX = 1.377 \times 10^{-5} \, m^4 \\
&JY = 2.754 \times 10^{-5} \, m^4
\end{align*}
\]

The coordinates (in meters) of the points characteristic of the beam are:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0.</td>
<td>10.</td>
</tr>
<tr>
<td>(y)</td>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>

1.2 Material properties

The properties of material constituting the beam are:

\[
E = 1.658 \times 10^{11} \, Pa
\]

\[
\nu = 0.3
\]

\[
\rho = 1.3404106 \times 10^4 \, kg \cdot m^{-3}
\]

\[
\alpha = AMOR_ALPHA = 0.001
\]

\[
\beta = AMOR_BETA = 0.
\]

1.3 Boundary conditions and loadings

The boundary condition which characterizes this problem is the embedding of the point \(A \) and is written:

\[
u = \nu = 0.
\]

\[
\theta = 0.
\]

For the loading one a:

\[
Fx = 3000. \, N
\]

\[
Fy = Fz = 0.
\]

(tractive effort)

\[
Fy = 3000. \, N
\]

\[
Fz = 0.
\]

(bending stress)
2 Reference solution

2.1 Method of calculating used for the reference solution

If the beam is modelled by a beam of Euler-Bernoulli and only one finite element, the harmonic problem can be written in the following way:

problem in traction:

\[(1 + i \alpha \omega) \frac{E S}{L} u(B) - \omega^2 \frac{\rho S L}{6} u(B) = F_x(B)\]

from where

\[u(B) = \frac{F(B)}{\frac{E S}{L} - \omega^2 \frac{\rho S L}{6} + i \alpha \omega \frac{E S}{L}}\]

problem in inflection:

\[
\begin{bmatrix}
 -\omega^2 \begin{bmatrix}
 13L^2 \\
 35L^3 \\
 -11L^2 \\
 210L^3 \\
 \end{bmatrix} - \frac{11L^2}{210L^3} + (1 + i \alpha \omega) \frac{12 EI_y}{L^3} \begin{bmatrix}
 1 \\
 -L \\
 2 \\
 L^2 \\
 3 \\
 \end{bmatrix} v(B) = [F_y(B)]
\end{bmatrix}
\]

Note:

If the material does not present damping, one has then: AMOR_ALPHA = \alpha = 0.

Efforts at the point \(B\) are calculated in the following way:

problem in traction:

\[N(B) = \left(\frac{E S}{L} - \omega^2 \frac{\rho S L}{6}\right) u(B)\]

problem in inflection:

\[
\begin{bmatrix}
 VY(B) \\
 MFZ(B) \\
 \end{bmatrix} = -\omega^2 \begin{bmatrix}
 13L^2 \\
 35L^3 \\
 -11L^2 \\
 210L^3 \\
 \end{bmatrix} - \frac{11L^2}{210L^3} + \frac{12 EI_y}{L^3} \begin{bmatrix}
 1 \\
 -L \\
 2 \\
 L^2 \\
 3 \\
 \end{bmatrix} v(B)
\]

The systems analytically are solved \(2 \times 2\) to obtain the solution.

2.2 Results of reference

The results of reference are the displacements, the speeds, the accelerations and the generalized efforts obtained at the point \(B\) during the harmonic analysis.
2.3 Notice for modeling B

For modeling B, one wants to test the problem in traction in the case of the keyword `FORCE_POUTRE` who allows to apply efforts distributed. To obtain the same solution as the beam subjected to nodal force in its end, the relation between the effort distributed constant and the nodal force are:

\[F_x(B) = \frac{fL}{2} \]

With the values given to paragraph 1.3, one a: \(f = 600 \, N/m \)

2.4 Uncertainty on the solution

If the assumptions are checked (beam of Euler-Bernoulli), the solution is analytical.

2.5 Bibliographical references

1) [R3.08.01] Elements beams “exact” (right and curved).
3 Modeling A

3.1 Characteristics of modeling

The beam consists of only one nets.
The modeling used for the beam is that of Euler-Bernoulli (POU_D_E).
The end A is embedded:

$$
\begin{align*}
&DX = DY = DZ = 0. \\
&DRX = DRY MARTINI = DRZ = 0.
\end{align*}
$$

Speeds and accelerations are obtained in way following in harmonic:

$$
\begin{align*}
&v(B) = i \omega u(B) \\
&a(B) = -\omega^2 u(B)
\end{align*}
$$

3.2 Characteristics of the grid

Many nodes: 2
Many meshes and types: 1 mesh of the type SEG 2
The points characteristic of the grid are the following:
3.3 Sizes tested (reality-imaginary form)

Problem 1: traction

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value de Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement</td>
<td>B DX</td>
<td>$(5.318 \times 10^{-5}, 0.)$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>speed</td>
<td>B DX</td>
<td>$(0., 3.341 \times 10^{-3})$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>acceleration</td>
<td>B DX</td>
<td>$(-2.099 \times 10^{-1}, 0.)$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>generalized effort</td>
<td>B NR</td>
<td>$(3000., 0.)$</td>
<td>'ANALYTICAL'</td>
</tr>
</tbody>
</table>

Problem 2: inflection

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value de Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement</td>
<td>B DY DRZ</td>
<td>$(1.828 \times 10^{-2}, 0.), (1.82 \times 10^{-2}, 0.)$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>speed</td>
<td>B DY DRZ</td>
<td>$(0., 1.1489), (0., 1.1438)$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>acceleration</td>
<td>B DY DRZ</td>
<td>$(-72.19, 0.), (-71.86, 0.)$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>generalized effort</td>
<td>B VY</td>
<td>$(3000., 0.)$</td>
<td>'ANALYTICAL'</td>
</tr>
</tbody>
</table>

Problem 3: traction + damping

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value de Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement</td>
<td>B DX</td>
<td>$(5.296 \times 10^{-5}, -3.363 \times 10^{-6})$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>speed</td>
<td>B DX</td>
<td>$(2.113 \times 10^{-4}, 3.327 \times 10^{-3})$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>acceleration</td>
<td>B DX</td>
<td>$(-2.091 \times 10^{-1}, 1.327 \times 10^{-2})$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>generalized effort</td>
<td>B NR</td>
<td>$(2.9879 \times 10^{3}, -1.897 \times 10^{2})$</td>
<td>'ANALYTICAL'</td>
</tr>
</tbody>
</table>

Problem 4: inflection + damping

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value de Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement</td>
<td>B DY DRZ</td>
<td>$(1.746 \times 10^{-2}, -4.469 \times 10^{-3}), (1.7579 \times 10^{-2}, -3.402 \times 10^{-3})$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>speed</td>
<td>B DY DRZ</td>
<td>$(2.808 \times 10^{-1}, 1.097), (2.138 \times 10^{-1}, 1.1045)$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>acceleration</td>
<td>B DY DRZ</td>
<td>$(-68.95, 17.64), (-69.36, 13.43$</td>
<td>'ANALYTICAL'</td>
</tr>
<tr>
<td>generalized effort</td>
<td>B VY MFZ</td>
<td>$(3.0215 \times 10^{2}, 1.212 \times 10^{2}), (-1.567 \times 10^{2}, -8.583 \times 10^{2})$</td>
<td>'ANALYTICAL'</td>
</tr>
</tbody>
</table>
4 Modeling B

4.1 Characteristics of modeling

The beam consists of only one nets.
The modeling used for the beam is that of Euler-Bernoulli (POU_D_E).
The end A is embedded:

\[DX = DY = DZ = 0, \quad DRX = DRY MARTINI = DRZ = 0. \]

4.2 Characteristics of the grid

Many nodes: 2
Many meshes and types: 1 mesh of the type SEG 2
The points characteristic of the grid are the following:
4.3 Sizes tested (reality-imaginary form)

Problem 1: traction (effort distributed real: worthless imaginary part)

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value of Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement B DX</td>
<td>(5.318 10^{-5}, 0.)</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>speed B DX</td>
<td>(0., 3.341 10^{-3})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>acceleration B DX</td>
<td>(−2.099 10^{-1}, 0.)</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>generalized effort B NR</td>
<td>(3000., 0.)</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Problem 2: traction (effort distributed complex: worthless rélle part)

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value of Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement B DX</td>
<td>(0., 5.318 10^{-5})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>speed B DX</td>
<td>(-3.341 10^{-3}, 0.)</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>acceleration B DX</td>
<td>(0., −2.099 10^{-1})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>generalized effort B NR</td>
<td>(0., 3000.)</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Problem 3: traction + damping (effort distributed real: worthless imaginary part)

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value of Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement B DX</td>
<td>(5.296 10^{-5}, −3.363 10^{-6})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>speed B DX</td>
<td>(2.113 10^{-4}, 3.327 10^{-3})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>acceleration B DX</td>
<td>(−2.091 10^{-1}, 1.327 10^{-2})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>generalized effort B NR</td>
<td>(2.9879 10^{3}, −1.897 10^{2})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Problem 4: inflection + damping (effort distributed complex: worthless real part)

<table>
<thead>
<tr>
<th>Not/Size</th>
<th>Value of Référence</th>
<th>Type of reference</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement B DX</td>
<td>(3.363 10^{-3}, 5.296 10^{-5})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>speed B DX</td>
<td>(-3.327 10^{-3}, 2.113 10^{-4})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>acceleration B DX</td>
<td>(−1.327 10^{-2}, −2.091 10^{-1})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
<tr>
<td>generalized effort B NR</td>
<td>(1.897 10^{2}, 2.9879 10^{3})</td>
<td>‘ANALYTICAL’</td>
<td>0.05</td>
</tr>
</tbody>
</table>

When the effort distributed is applied as an imaginary part of the loading, the reference solution is obtained from that of real left modeling A while exchanging and imaginary part and by changing the sign of the new real parts.
5 Summary of the results

The analytical results well are found.