SSLS107 - Subjected cylindrical panel with its own weight

Summary:

This test makes it possible to validate two finite elements of thick hull in linear elasticity. Modeling A tests the quadrangle, modeling B tests the triangle associated with the formulation. This problem of cylindrical panel under actual weight is a classical test of hull.

The results of reference are analytical solutions.

One will note the good performances obtained with the quadrangle and the results much less good got with the triangle.
1 Problem of reference

1.1 Geometry

Coordinates of the points:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>y</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>z</td>
<td>3.</td>
<td>3.</td>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>

1.2 Material properties

\[E = 3.1 \times 10^{10} \text{ Pa} \]
\[\nu = 0. \]
\[\rho = 2.0833 \times 10^4 \text{ kg/m}^3 \]

1.3 Boundary conditions and loadings

Rigid diaphragm at each end: \(u = v = 0 \), \(\theta_z = 0 \).

Loading 1: Force due to gravity \(g = -10 \text{ m/s}^2 \)

Loading 2: Force hull vertical distributed load \(F_x = -6250 \text{ N} \)

Two loadings leading to the same solution are tested.
2 Reference solution

2.1 Method of calculating used for the reference solution

The parameters of the problem and the results of reference (analytical solutions) are given by BATOZ and DHATT [bib1].

2.2 Results of reference

Displacement of the point B according to X
Displacement of the point C according to X.

2.3 Bibliographical references

3 Modeling A

3.1 Characteristics of modeling

Element of COQUE_3D MEC3QU9H

![Diagram of a quarter of cylinder]

Cutting:
- 6 on \(AB\) and \(DC\)
- 6 on \(AD\) and \(BC\) : 36 meshes QUAD9

Limiting conditions:

- **DDL_IMPO:**
 - \(\text{GROUP}_{\text{NO}}: AD\)
 - \(\text{DX}: 0.\), \(\text{DY}: 0.\), \(\text{DRZ}: 0.\)
 - \(\text{GROUP}_{\text{NO}}: \text{CDsansCD}\)
 - \(\text{DY}: 0.\), \(\text{DRY MARTINI}: 0.\), \(\text{DRZ}: 0.\)

- **arc (BC)**
 - \(\text{GROUP}_{\text{NO}}: BC\)
 - \(\text{DX}: 0.\), \(\text{DRX}: 0.\), \(\text{DRY MARTINI}: 0.\)

- **in C**
 - \(\text{GROUP}_{\text{NO}}: C\)
 - \(\text{DY}: 0.\), \(\text{DRZ}: 0.\)

Loading:

- **FORCE_COQUE:**
 - \(\text{FX}: -6250.\)

- **GRAVITY:**
 - \((10. -1. 0. 0.)\)

Names of the nodes:
- Not \(A\) \(N03\)
- Not \(B\) \(N02\)
- Not \(C\) \(N01\)
- Not \(D\) \(N04\)

3.2 Characteristics of the grid

- Many nodes: 169
- Many meshes and types: 36 QUAD9

3.3 Values tested

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not (B) (\text{displacement}) (DX)</td>
<td>(-3.61 \times 10^{-2})</td>
</tr>
<tr>
<td>Not (C) (\text{displacement}) (DX)</td>
<td>(5.44 \times 10^{-3})</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
4 Modeling B

4.1 Characteristics of modeling

Element of hull 3D MEC3TR7H

Modeling of a quarter of cylinder

Cutting:

12 on AB and DC
12 on AD and BC : 288 meshes TRIA7

Limiting conditions:
in all the nodes of:

- arc (AD)
 - DDL_IMPO:
 - (GROUP_NO: AD DX: 0. , DY: 0. , DRZ: 0.)

- segment CD
 - (GROUP_NO: CD sans CD DY: 0. , DRY MARTINI: 0. , DRZ: 0.)

- arc (BC)
 - (GROUP_NO: BC DX: 0. , DRX: 0. , DRY MARTINI: 0.)

- in C
 - (GROUP_NO: C DY: 0. , DRZ: 0.)

The grid is of directed type:

Loading:

- FORCE_COQUE: (FX: -6250.)
- GRAVITY: (10. -1. 0. 0.)

Names of the nodes:

- Not A N03
- Not B N02
- Not C N01
- Not D N04

4.2 Characteristics of the grid

- Many nodes: 913
- Many meshes and types: 288 TRIA7

4.3 Values tested

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not B displacement DX</td>
<td>3.61×10^{-2}</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.41×10^{-3}</td>
</tr>
</tbody>
</table>
5 Summary of the results

The element MEC3QU9H allows to obtain a good solution with a coarse network, while the element MEC3TR7H require a very fine grid to reach a satisfactory precision.

It is noted that the reference solution is the analytical solution obtained starting from the theory of the "deep" hulls. The 2 elements of hull converge towards this solution and not towards the theory of the "not very deep" hulls.