SSLV301 - Cylindrical beam comforts under load linearly distributed

Summary:

The goal of the test is to validate a load linearly distributed, starting from an analysis 2D with decomposition in Fourier series of the load.

2 calculations here are carried out:

1) a calculation with the first 2 modes (0 and 1),
2) a calculation with the first 10 modes.
1 Problem of reference

1.1 Geometry

![Diagram of a cylinder with labeled dimensions and loads](image)

Length : \(L = 0.240 \text{ m} \)
Ray : \(R = 0.006 \text{ m} \)

1.2 Material properties

\[E = 2.1 \times 10^{11} \text{ N/m}^2 \]
\[\nu = 0.3 \]

1.3 Boundary conditions and loadings

- Edge \(AB \) embedded
- Load varying linearly according to \(z \) on the generator \(BC \), being worth:

\[q = 0 \text{ in } C \text{ and } q = -3000 \text{ N/m in } B \]

1.4 Initial conditions

Without object for the static analysis.
2 Reference solution

2.1 Method of calculating used for the reference solution

The reference solution is obtained analytically [bib1].

2.2 Results of reference

1) Radial displacement of the point $C: u_r = -1.552 \times 10^{-3} \text{ m}$

2) Constraints of embedding at the point $B: \sigma_{zz}(B) = 169.8 \times 10^6 \text{ Pa}$

2.3 Uncertainty on the solution

Analytical solution.

2.4 Bibliographical reference

3 Modeling A

3.1 Characteristics of modeling

AXIS_FOURIER, T6 nets

Cutting: 80 elements according to the length
2 elements in the thickness

3.2 Characteristics of the grid

Many nodes: 805
Many meshes and types: 320 TRIA6

3.3 Values tested

Values provided for $\theta = 0$.

<table>
<thead>
<tr>
<th>Localization</th>
<th>Type of value</th>
<th>Reference</th>
<th>Aster</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation</td>
<td>$u_r(m)$</td>
<td>-1.552×10^{-3}</td>
<td>-1.54839×10^{-3}</td>
<td>-0.232</td>
</tr>
<tr>
<td>Not C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not B</td>
<td>$\sigma_z(Pa)$</td>
<td>169.8×10^6</td>
<td>168.73×10^6</td>
<td>-0.63</td>
</tr>
</tbody>
</table>
Calculation modes

<table>
<thead>
<tr>
<th>Calculation</th>
<th>2 (10 modes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not C</td>
<td>$u_r(m)$</td>
</tr>
<tr>
<td></td>
<td>-1.552×10^{-3}</td>
</tr>
<tr>
<td>Not B</td>
<td>$\sigma_{zz}(Pa)$</td>
</tr>
<tr>
<td></td>
<td>169.8×10^6</td>
</tr>
</tbody>
</table>

Notice

The values of the arrow of the beam and the constraint of embedding are obtained with precision with the first two modes only.

Summary of the results

The results resulting from calculation are in concord with the analytical solution.