SSLV314 - Propagation planes of a crack emerging with X-FEM

Summary:

The goal of this test is to compare the methods of propagation simplex, grid, upwind, geometrical of the operator PROPA_FISS for a crack 3D solicited in mode I pure.
1 Problem of reference

1.1 Geometry

![Diagram of the fissured plate]

Geometrical dimensions of the fissured plate:

- width \(L = 8 \text{ m} \)
- thickness \(E = 1 \text{ m} \)
- height \(H = 18 \text{ m} \)

The crack is horizontal, the face being initially positioned in \((x, 2, 9)\).

1.2 Properties of material

Young modulus \(E = 205000 \text{ MPa} \)
Poisson's ratio \(\nu = 0.3 \)

1.3 Boundary conditions and loadings

Boundary conditions:
- Not \(P : \Delta X = \Delta Y = \Delta Z = 0 \)
- Points on the segment \(AB : \Delta X = \Delta Z = 0 \)
- Points on surface \(INF : \Delta Z = 0 \)

Loading:
- Pressure on surface \(SUP : P = -1 \) MPa
2 Reference solution

2.1 Method of calculating

Not regression.

2.2 Sizes and results of reference

The results of modeling B (method Grid) are taken as reference. For modeling B and C, one checks to it not regression of the code compared to the position of the bottom of crack.

For modelings A, D, E and F, one checks that the nodes closest to the trace of the bottom of crack on the plan (1, y, z) at the last moment of propagation their level-sets very close to zero have.

<table>
<thead>
<tr>
<th>Moment of propagation</th>
<th>Node</th>
<th>Coordinate y_i</th>
<th>Coordinate z_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>N926</td>
<td>2.33</td>
<td>8.80</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N1028</td>
<td>2.33</td>
<td>9.00</td>
</tr>
<tr>
<td>N1130</td>
<td>2.33</td>
<td>9.20</td>
<td></td>
</tr>
</tbody>
</table>

These nodes are those included in a ray of capture being worth the backbone of an element, centered on the trail of bottom of crack on the plan (1, y, z).

One identifies these nodes in the .mess of modeling B and one estimates the value of their level-sets in modelings A, D, E and F.
3 Modeling A

3.1 Characteristics of modeling

Method **simplex** is used by **PROPA_FISS**.

3.2 Characteristics of the grid

The structure is modelled by a grid made up of 2040 elements **HEXA8** (see Figure 3.2-a).

![Figure 3.2-a: grid of the structure](image)

The grid is very coarse to reduce the computing time. Elements a little smaller are used in the zone of propagation of the crack. The dimension of the elements is $0.17 \times 0.33 \times 0.2\,\text{m}$ in this zone. The largest element used has a dimension equalizes with $0.17 \times 0.8 \times 1.6\,\text{m}$.

3.3 Sizes tested and results

One extracts the level set normal (LSN) and tangent (LST) by using the operator **POST_RELEVE_T** and it is checked that the values maximum and minimal remain understood in the ray of capture of the nodes tested around the face of crack, that is to say 1/3:

<table>
<thead>
<tr>
<th>Propag. i</th>
<th>Max LSN_i</th>
<th>Min LSN_i</th>
<th>Max LST_i</th>
<th>Min LST_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.267</td>
<td>0.267</td>
</tr>
</tbody>
</table>

The got results show well that the level-sets remain lower than the ray in which the face of crack was localised. That means that the bottom of crack was correctly located by the method simplex.
4 Modeling B

4.1 Characteristics of modeling

Method GRID is used by PROPA_FISS. The option CALC_K_G is used by CALC_G to estimate the stress intensity factors.

4.2 Characteristics of the grid

One uses the same grid as for modeling A.

4.3 Sizes tested and results

One tests, in nonregression with a tolerance of 0.1%, the position of the bottom of crack to the last iteration of propagation by raising the extrema of the ordinates of the points which compose it.

<table>
<thead>
<tr>
<th>Moment of propagation</th>
<th>Max Coord y_i</th>
<th>Min Coord y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.6</td>
<td>2.57</td>
</tr>
</tbody>
</table>
5 Modeling C

5.1 Characteristics of modeling

Method GRID is used by PROPA_FISS. The operator POST_K1_K2_K3 is used to estimate the stress intensity factors.

5.2 Characteristics of the grid

One uses the same grid as for modeling A.

5.3 Sizes tested and results

One tests, in nonregression with a tolerance of 0.1%, the position of the bottom of crack to the last iteration of propagation by raising the extrema of the ordinates of the points which compose it.

<table>
<thead>
<tr>
<th>Moment of propagation</th>
<th>Max Coord y_i</th>
<th>Min Coord y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.6</td>
<td>2,592</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a “Machine Translation”. It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
6 Modeling D

6.1 Characteristics of modeling

Method **UPWIND** without auxiliary grid is used by **PROPA_FISS**.

6.2 Characteristics of the grid

One uses the same grid as that of modeling A.

6.3 Sizes tested and results

One extracts the level-set normal (\(LSN\)) and tangent (\(LST\)) by using the operator **POST_RELEVE_T** and it is checked that the values maximum and minimal remain understood in the ray of capture of the nodes tested around the face of crack, that is to say 1/3:

<table>
<thead>
<tr>
<th>Propag. (i)</th>
<th>(Max\ LSN_i)</th>
<th>(Min\ LSN_i)</th>
<th>(Max\ LST_i)</th>
<th>(Min\ LST_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.2</td>
<td>-0.2</td>
<td>-0.267</td>
<td>-0.267</td>
</tr>
</tbody>
</table>

The got results show well that the level-sets remain lower than the ray in which the face of crack was localised. That means that the bottom of crack was correctly located by the method upwind.
7 Modeling E

7.1 Characteristics of modeling

Method GEOMETRICAL is used by PROPA_FISS.

7.2 Characteristics of the grid

One uses the same grid as that of modeling A.

7.3 Sizes tested and results

One extracts the level-set normal (LSN) and tangent (LST) by using the operator POST_RELEVE_T and it is checked that the values maximum and minimal remain understood in the ray of capture of the nodes tested around the face of crack, that is to say 1/3:

<table>
<thead>
<tr>
<th>Propag.</th>
<th>Max LSN</th>
<th>Min LSN</th>
<th>Max LST</th>
<th>Min LST</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.267</td>
<td>0.267</td>
</tr>
</tbody>
</table>

The got results show well that the level-sets remain lower than the ray in which the face of crack was localised. That means that the bottom of crack was correctly located by the geometrical method.
8 Modeling F

8.1 Characteristics of modeling

Method **SIMPLEX** is used by **PROPA_FISS**.

8.2 Characteristics of the grid

One uses the same grid as that of modeling A.
One makes a refinement Lobster on the initial grid to obtain pyramidal meshes.
That makes it possible to test the method on various meshes and to observe that the result remains correct.

8.3 Sizes tested and results

One extracts the level-set normal (**LSN**) and tangent (**LST**) by using the operator **POST_RELEVE_T**
and it is checked that the values maximum and minimal remain understood in the ray of capture of the nodes tested around the face of crack, that is to say 1/3:

<table>
<thead>
<tr>
<th>Propag. i</th>
<th>Max LSN<sub>i</sub></th>
<th>Min LSN<sub>i</sub></th>
<th>Max LST<sub>i</sub></th>
<th>Min LST<sub>i</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.267</td>
<td>0.267</td>
</tr>
</tbody>
</table>

The got results show well that the level-sets remain lower than the ray in which the face of crack was localised. That means that the bottom of crack was correctly located by the geometrical method.
9 Summary of the results

All methods of propagation used (simplex, geometrical grid, upwind and) of the operator PROPA_FISS allowed to calculate the position of a crack well propagating in mode I pure in a structure 3D.