SDNV301 - Hertzian collision of two elastic balls

Summary:

This test models the nonlinear vibratory answer of two elastic balls returning in collision, subjected at an initial speed. The goal is to validate the order DYNA_NON_LINE with a linear elastic behavior and contact with DEFI_CONTACT.

Two modelings suggested are the following ones:

- **Modeling \(A \)**: linear grid with meshes QUAD4, and a diagram of temporal integration of type HTT (implicit). One tests formulation of the contact DISCRETE with one algorithm of contact of the type CONSTRAINT as solution AUTRE_ASTER.

- **Modeling \(B \)**: quadratic grid with meshes QUAD8, and a diagram of temporal integration of type HTT (implicit). The formulation of the contact is tested DISCRETE with the algorithm of contact of the type CONSTRAINT as solution AUTRE_ASTER.
1 Problem of reference

1.1 Geometry

Ray of the balls | 8.0
Speed | 1.0

1.2 Properties of material

The material is elastic isotropic whose properties are:

- Young modulus $E = 50000$
- Poisson's ratio $\nu = 0.3$
- Density $\rho = 1$

1.3 Boundary conditions and loadings

No boundary condition is applied.

1.4 Initial conditions

An equal in amplitude and opposite vertical uniform speed is applied to the balls.
2 Reference solution

2.1 Method of calculating

The reference solution was obtained using platform LMGC90 of the university of Montpellier.

2.2 Sizes and results of reference

The selected results of reference relate to maximum displacement in the center and the top of the higher ball.

<table>
<thead>
<tr>
<th>Time (S)</th>
<th>Not</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.289</td>
<td>A (centre)</td>
<td>0.05</td>
</tr>
<tr>
<td>0.289</td>
<td>B (Surface)</td>
<td>0.21454</td>
</tr>
</tbody>
</table>

2.3 Uncertainties on the solution

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
Digital solution < 5%.

2.4 Bibliographical references

[1] Plate-form LMGC90 of the university of Montpellier
3 Modeling A

3.1 Characteristics of modeling

A modeling is used AXIS.

3.2 Characteristics of the grid

- Many nodes: 834
- Many meshes: 1024
- Group of nodes:
 - Center
 - Low
- Group of meshes:
 - Bille_sup
 - Bille_Inf
 - Contact_Haut
 - Contact_Bas

3.3 Characteristics of the fields tested

- Contact: Formulation DISCRETE with the method CONSTRAINT
- Dynamics: DYNA_NON_LINE with a diagram of temporal integration of type HHT (\(\alpha=-0.3\) and MODI_EQUI='NOT')

The step of time is selected to 0.00 05. The moment O is tested ú the displacement obtained by the reference, in the center of the ball, is maximum.

3.4 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Moment (S)</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DY</td>
<td>0.289</td>
<td>'SOURCE_EXTERNE'</td>
<td>0.05</td>
</tr>
<tr>
<td>B</td>
<td>DY</td>
<td>0.289</td>
<td>'SOURCE_EXTERNE'</td>
<td>0.21454</td>
</tr>
</tbody>
</table>
4 Modeling B

4.1 Characteristics of modeling

A modeling is used AXIS.

4.2 Characteristics of the grid

- Many nodes: 2434
- Many meshes: 1024
- Group of nodes:
 - Center
 - Low
- Group of meshes:
 - Bille_sup
 - Bille_Inf
 - Contact_Haut
 - Contact_Bas

4.3 Characteristics of the fields tested

- Contact: Formulation DISCRETE with the method CONSTRAINT
- Dynamics: DYNA_NON_LINE with a diagram of temporal integration of type HHT (\text{ALPHA}=-0.3 \text{ and MODI_EQUI='NOT'})

The step of time is selected to 0.00 05. The moment O is tested ù the displacement obtained by the reference, in the center of the ball, is maximum.

4.4 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Moment (S)</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.289</td>
<td>‘SOURCE_EXTERN’</td>
<td>0.05</td>
<td>4.0</td>
</tr>
<tr>
<td>B</td>
<td>0.289</td>
<td>‘SOURCE_EXTERN’</td>
<td>0.21454</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Summary of the results

On the figures below we represented the evolution of the displacement and speed in the center and the level of the point of contact of the higher ball compared with the results got with LGMC90.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)