SSNA106 - Subjected hollow roll with a behavior thermoviscoelastic

Summary:

This CAS-test makes it possible to validate the law of LEMAÎTRE established in Code_Aster in the case of linear behavior thermoviscoelastic. The found results are compared with an analytical solution.
1 Problem of reference

1.1 Geometry

![Diagram of cylinder](image)

\[R_0 \quad 1 \text{ m} \]
\[R_1 \quad 2 \text{ m} \]

1.2 Properties of materials

Young modulus: \(E = 1 \text{ MPa} \)

Poisson's ratio: \(\nu = 0.3 \)

Dilation coefficient: \(\alpha = 0.7 \)

Law of LEMAITRE:

\[
g(\sigma, \lambda, T) = \left(\frac{1}{K} \frac{\sigma}{\lambda^m} \right)^n \quad \text{with} \quad \frac{1}{K} = 1, \quad \frac{1}{m} = 0, \quad n = 1
\]

1.3 Boundary conditions and loading

Boundary conditions:

The cylinder is blocked in \(DY \) on the sides \([AB]\) and \([CD]\).

Loading:

The cylinder is subjected to a field of temperature \(T(r, t) = t r^2 \).
2 Reference solutions

2.1 Method of calculating used for the reference solutions

The whole of this demonstration can be read with more details in the document [bib1].

In the case of a linear viscoelastic isotropic material, one can describe the behavior in the course of time using two functions \(I(t) \) and \(K(t) \) so that strains and stresses can be written:

\[
\varepsilon(t) = (I + K) * \frac{d\sigma(t)}{dt} - K * \frac{d(Tr(\sigma(t)))}{dt} I_3 + \alpha dT(r,t) I_3
\]

where \(I_3 \) indicate the matrix identity of row 3

and \(* \) the product of convolution:

\[
(f * g)(t) = \int f(t - \tau) g(\tau) d\tau
\]

The thermoelastic problem are equivalent, via the transform of Laplace is:

\[
\begin{align*}
\varepsilon^+ & = (I^+ + K^+) \sigma^+ - K^+ Tr(\sigma^+) I_3 + \frac{\alpha r^2}{p} I_3 \\
\sigma^+ & = \frac{d\sigma^+}{dr} = \frac{1}{r} \left(\sigma^+ - \sigma_r^+ \right) \\
\varepsilon_r^+ & = 0 \\
\varepsilon_\theta^+ & = 0
\end{align*}
\]

By eliminating the sign "+":

\[
\begin{align*}
(I + K) \sigma_r - K(\sigma_r + \sigma_\theta + \sigma_z) + \frac{\alpha r^2}{p} & = 0 \\
(I + K) \sigma_\theta - K(\sigma_r + \sigma_\theta + \sigma_z) + \frac{\alpha r^2}{p} & = (I + K) \sigma_r - \frac{(I + K) K}{I} (\sigma_r + \sigma_\theta) + \frac{(I + K) \alpha r^2}{p}
\end{align*}
\]

maybe,

\[
\begin{align*}
\sigma_r & = \frac{K}{I} (\sigma_r + \sigma_\theta) - \frac{\alpha r^2}{p I} \\
(I + K) \sigma_\theta & = (I + K) \sigma_r - \frac{(I + K) K}{I} (\sigma_r + \sigma_\theta) + \frac{(I + K) \alpha r^2}{p}
\end{align*}
\]
\[(I + K)\sigma_0 + r_0^2 (I + K)\sigma_0 - \frac{(I + K)K}{I} (\sigma_r + \sigma_0) + \frac{(I + K) \alpha r^2}{I} \frac{I}{p} = (I + K)\sigma_r,\]

According to the equilibrium equation, one has \(\sigma_0 = r\sigma_r^2 + \sigma_r\), one obtains:

\[(I + K)\sigma_r^2 + r_0^2 (I + K)(r \sigma_r + \sigma_r) - \frac{(I + K)K}{I} (2\sigma_r + r \sigma_r^2) = 0,\]

\[2\sigma_r + r \sigma_r^2 = A + \frac{\alpha r^2}{4p(K - I)} \frac{I}{K - I},\]

what while integrating compared to R gives:

\[\sigma_r = \frac{A}{2} + \frac{B}{r^2} + \frac{\alpha r^2}{4p(K - I)},\]

boundary conditions \(\sigma_r(r_0) = \sigma_r(r_1) = 0\) give:

\[A = -\frac{\alpha}{2p(K - I)} (r_0^2 + r_1^2),\]

\[B = \frac{\alpha r_0^2}{4p(K - I)} (r_1 - r_0).\]

One thus has by taking again the initial notations:

\[\sigma_r^2 = \frac{\alpha}{4p(I^+ - K^+)} (r_0^2 + r_1^2 - r^2 - \frac{r_0^2 r_1^2}{r^2}),\]

\[\sigma_0^2 = \frac{\alpha}{4p(I^+ - K^+)} (r_0^2 + r_1^2 - 3r^2 + \frac{r_0^2 r_1^2}{r^2}),\]

\[\sigma_r^2 = \frac{\alpha}{p(I^+ - K^+)} \frac{K^+ (r_0^2 + r_1^2)}{I^+} \frac{2}{2} - r^2.\]

Maybe, by taking the opposite transform,

\[\alpha \left(1 - e^{-r} \right) \frac{r_0^2}{r_1^2} + r_1^2 - r^2 - \frac{r_0^2 r_1^2}{r^2} \]

\[= 0 \]

\[\frac{\alpha}{2k} \left(1 - e^{-r} \right) \frac{r_0^2}{r_1^2} + r_1^2 - 3r^2 + \frac{r_0^2 r_1^2}{r^2} \]

\[= 0 \]

\[\frac{\alpha}{k} \left(1 - e^{-r} \right) \frac{r_0^2}{r_1^2} + r_1^2 - 2r^2 + \frac{r_0^2 r_1^2}{r^2} \]

\[= 0 \]

One from of deduced \(\varepsilon_r\) and \(w\):

\[w(r, t) = \frac{1 - 2\nu}{E} \frac{\alpha r^2}{4} \left[\left(1 - e^{-r} \right) \frac{r_0^2}{r_1^2} + r_1^2 - \frac{r_0^2 r_1^2}{r^2} \right] + \left(1 - e^{-Ekt} \right) \frac{r_0^2 + r_1^2}{4} \frac{3Ekt}{(1 - 2\nu)} \frac{r_0^2 r_1^2}{r^2} + r_1^2 \]
2.2 Results of reference

Displacement DX on the node B

2.3 Uncertainty on the solution

0% : analytical solution

2.4 Bibliographical references

PH. BONNIERES, two analytical solutions of axisymmetric problems in linear viscoelasticity and with unilateral contact, Note H1-71/8301
3 Modeling A

3.1 Characteristics of modeling

The problem is modelled in axisymetry

3.2 Characteristics of the grid

120 meshes QUAD4

3.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Moments</th>
<th>Reference</th>
<th>Tolerance %</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX (B)</td>
<td>0.24</td>
<td>1,110</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

4 Summary of the results

Results calculated by Code_Aster are in agreement with the analytical solutions but very strongly depend on the refinement of the grid.