SSNL139 – Validation of the reactualization of the angle of gimlet of the beams

Summary:

When one uses the elements beam with kinematics GROT_GDEP, the two nautical angles which translate the orientation of the element must be brought up to date with each iteration. The same applies to the 3rd nautical angle translating the angle of gimlet of the beam. The purpose of this test is to validate the reactualization of this angle using a non-linear calculation.

It makes it possible to check modeling POU_D_TGM and that modelings POU_D_E and POU_D_EM the same results with kinematics give GROT_GDEP.
1 Description

1.1 Geometry

A beam a length is considered 10 m, directed with 45° in the plan XOZ.

![Beam Diagram]

The section of the beam is rectangular, 0.1 m of broad, 0.2 m of top.

1.2 Properties of materials

The material uses the following properties:

- Young modulus: $E_b = 1.0 \times 10^9$ Pa
- Poisson's ratio: $\nu_b = 0.25$

1.3 Boundary conditions and loadings

Nœud O is blocked in displacement in all the directions and rotation around Y. Nœud A is blocked in displacement according to Y. Moreover, one prohibits with the beam rotation on itself.

Displacements of Nœud A are imposed as follows: $DX = -\frac{\sqrt{2}}{2} \frac{t}{100}$ and $DZ = -\frac{\sqrt{2}}{2} \frac{t}{100}$ with t taking the values from 0 to 1 per increment of 0.1.

A force of 100 N according to Y is applied to Nœud C (medium of beam) so that the beam moves in the direction Y.

1.4 Reference

The results of reference are obtained with a non-linear calculation and a beam directed according to the axis X. For this orientation the value of the angle of gimlet remains always the same one during calculation, with and without reactualization the results are identical.

For the reference the displacement imposed on Nœud A is: $DX = -\frac{t}{100}$

Displacement DY Nœud C (medium of beam) gives L has value of reference.
2 Modeling A

2.1 Characteristics of modeling

The beam is modelled by 10 meshes SEG2 to which modeling is affected POU_D_TGM. It is pointed out that kinematics used is DEFORMATION = ‘GROT_GDEP’.

2.2 Values tested

One compares displacement in Y Nœud C with that obtained by same calculation with a beam directed according to the axis X.

<table>
<thead>
<tr>
<th>Moment</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Another Aster</td>
<td>1.508470E-01</td>
<td>1.0E-05</td>
</tr>
</tbody>
</table>
3 Modeling B

3.1 Characteristics of modeling

The beam is modelled with 10 meshes SEG2 which one affects modeling POU_D_E. It is pointed out that kinematics used is DEFORMATION = ‘GROT_GDEP’.

3.2 Values tested

One compares displacement in Y Noed C with that obtained by same calculation with a beam directed according to the axis X.

<table>
<thead>
<tr>
<th>Moment</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Another Aster</td>
<td>0.15658191432102</td>
<td>1.0E-05</td>
</tr>
</tbody>
</table>
4 Modeling C

4.1 Characteristics of modeling

The beam is modelled by 10 meshes SEG2 which one affects modeling POU_D EM. It is pointed out that kinematics used is \text{DEFORMATION} = ‘\text{GROT_GDEP}’.

4.2 Values tested

One compares displacement in Y Nœud C with that obtained by same calculation with a beam directed according to the axis X and also with the same calculation with POU_D_E.

<table>
<thead>
<tr>
<th>Moment</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Another Aster</td>
<td>0.15668437975194</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>1.0</td>
<td>Another Aster (POU_D_E)</td>
<td>0.15658191432102</td>
<td>7.0E-04</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
5 Synthesis

The reactualization of the angle of gimlet makes it possible to give an account of displacements and rotations of the sections of the beam during incrémentaux calculations.