SSNP302 - Element charged in thermics - Appearance of the secondary stresses

Summary:

This test of linear quasi-static mechanics 2D consists in charging in thermics an element with plate to degree 1, by applying a field of temperature which varies linearly on the element and by fixing a side of the element.

This element being of degree 1, the total mechanical deformation will be constant in the element. The fields thermics imposing a linear deformation in the element, it will be necessary to take a dilation coefficient and a sufficiently large heat gradient to make the deformation mechanical total sensitive to the imposed thermal field.

The plate is modelled by an element plan (MECPQ4).
1 Problem of reference

1.1 Geometry

![Diagram of a rectangular element with applied stresses and boundary conditions.](image)

Length: $a = 1$

1.2 Material properties

Isotropic elastic material:

$$E = 200000 \text{ Mpa}$$

$$\nu = 0.$$

$$\alpha = 1 \times 10^{-6} \circ C$$

1.3 Boundary conditions and loadings

Not A:

$$u_x = 0.$$

$$u_y = 0.$$

On the side AD:

$$u_x = 0.$$

On the side BC:

$$\sigma_D = 100 \text{ MPa}$$

Application of a field of temperature which varies linearly on the element with $T_{max} = 1000 \circ C$.
2 Reference solution

2.1 Method of calculating used for the reference solution

Analytical solution.

2.2 Results of reference

The mechanical deformation is worth:

\[\varepsilon_{mec} = \varepsilon - \varepsilon_{th} = \varepsilon - \alpha T \]

With an element with the degree one and a diagram \(2 \times 2\) of integration one will have:

\[\varepsilon_{mec} = \frac{u_{sB} - u_{sA}}{a} - \alpha \left[\frac{1 + \xi}{2} T_{\text{max}} \right] \]

\[= \frac{\sigma_d}{E} + \frac{1}{2} \alpha T_{\text{max}} - \alpha \left[\frac{1 + \xi}{2} T_{\text{max}} \right] \]

The constraint in the test will be worth:

\[\sigma = E \varepsilon_{mec} \quad \text{with} \quad \varepsilon_{mec} = 10^{-3} - \alpha \left[\frac{1 + \xi}{2} T_{\text{max}} \right] \]

2.3 Notice

The thermal component of the constraint depending on the intrinsic coordinate, the solution is to consider an average temperature by element.
3 Modeling A

3.1 Characteristics of modeling A

![Diagram of plane constraints](image)

Modeling in plane constraints: **C_PLAN**

The loading and the boundary conditions are modelled by:

- **DDL_IMPO** (Node **NO1** \(DX = 0 \) \(DY = 0 \))
 (Node **NO4** \(DX = 0 \))

- nodal forces imposed on the nodes **NO2** and **NO3**

- temperatures imposed on the nodes
 - **NO1**, **NO4**: \(T = 0 \°C \)
 - **NO2**, **NO3**: \(T = 1000 \°C \)

3.2 Characteristics of the grid

- Many nodes: 4
- Many meshes and types: 1 **MECPQU4** with diagram of integration \(2 \times 2 \)

3.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIXX (NO1)</td>
<td>200</td>
</tr>
<tr>
<td>SIXX (NO4)</td>
<td>200</td>
</tr>
<tr>
<td>SIXX (NO2)</td>
<td>0</td>
</tr>
<tr>
<td>SIXX (NO3)</td>
<td>0</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
4 Summary of the results

The results provided by Code_Aster are very satisfactory.