SSNV180 - Taking into account of thermal dilation and the creep of desiccation in the models BETON_UMLV and BETON_BURGER

Summary:

This test makes it possible to validate the taking into account of thermal dilation and the creep of desiccation in the laws of behavior BETON_UMLV and BETON_BURGER. The results of this test are compared with a digital solution obtained with Scilab 2.7.2. in the case of a modeling 3D (BETON_UMLV) and a digital solution obtained with python for BETON_BURGER (SSNV180B.44).

Modeling a: Creep test with thermal dilation for the model BETON_UMLV
Modeling b: Creep test with thermal dilation for the model BETON_BURGER
1 Problem of reference

1.1 Geometry

![Diagram of a cube with dimensions labeled: height h = 1.00 m, width l = 1.00 m, thickness e = 1.00 m]

1.2 Properties of material

- \(E = 31 \text{ [GPa]} \) modulus of elasticity
- \(\nu = 0.2 \) Poisson's ratio
- \(k_{re} = 60 \text{ [\(\mu m/m \)]} \) endogenous coefficient of withdrawal
- \(k_{rd} = 10 \text{ [\(\mu m/m.m^3/l \)]} \) coefficient of withdrawal of desiccation
- \(\alpha = 10 \text{ [\(\mu m/m.°C \)]} \) thermal dilation coefficient

Here one informs also the curved sorption-desorption which connects the water content \(C \) with the hygroscopy \(h \).
In this case one supposed that the two quantities were connected by the following linear relation:

\[C \text{ [l/m}^3\text{]} = h \text{ [%]}. \]

Parameters specific to the creep of desiccation:

\[\eta_{fd} = 5.30E + 4 \text{ [MPa.s]} \]
Parameters specific to BETON_UMLV:

\[k_r^s = 1.20 \times 10^5 \text{ [MPa]} \]
\[k_r^d = 3.86 \times 10^4 \text{ [MPa]} \]
\[\eta_r^s = 2.21 \times 10^9 \text{ [MPa.s]} \]
\[\eta_r^d = 6.19 \times 10^8 \text{ [MPa.s]} \]
\[\eta_r^s = 1.64 \times 10^9 \text{ [MPa.s]} \]
\[\kappa = 3.0 \times 10^{-3} \]

spherical part: rigidity connects associated with the skeleton formed by blocks with hydrates on a mesoscopic scale

spherical part: rigidity connects intrinsically associated with the hydrates on a microscopic scale

deviatoric part: rigidity associated with the capacity with water adsorbed to transmit loads (load bearing toilets)

deviatoric part: rigidity associated with the reversible field with the differed deformations

deviatoric part: rigidity associated with the irreversible mechanism of diffusion

Parameters specific to BETON_BURGER:

\[k_r^s = 1.20 \times 10^5 \text{ [MPa]} \]
\[k_r^d = 3.86 \times 10^4 \text{ [MPa]} \]
\[\eta_r^s = 2.21 \times 10^9 \text{ [MPa.s]} \]
\[\eta_r^d = 6.19 \times 10^8 \text{ [MPa.s]} \]
\[\eta_r^s = 1.64 \times 10^9 \text{ [MPa.s]} \]
\[\kappa = 3.0 \times 10^{-3} \]

spherical part: rigidity connects associated with the reversible field with the differed deformations

deviatoric part: rigidity associated with the reversible field with the differed deformations

deviatoric part: rigidity associated with the irreversible mechanism of diffusion

1.3 Boundary conditions and loadings

In this test, one creates a homogeneous field of drying in the structure varying linearly over duration a 750 days, initial moisture is worth 100% (condition of a sealed test-tube) and decrease gradually until 50% to the 750ème day.

The degree of hydration varies linearly from 0 to 1 between the initial moment and the 28ème day.

The temperature of reference is worth 20°C. The thermal loading corresponds to a rise in temperature varying from 20°C and 40°C between the initial moment and the final moment.

The mechanical loading corresponds to an one-way compression according to the vertical direction (\(z \) in 3D); its intensity is of 12 [MPa]. The load is applied in 1s and is maintained constant for 100 days.

1.4 Initial conditions

The beginning of calculation is supposed at the moment –1. At this moment there is neither field of drying, nor forced mechanical.

To moment 0, one applies a field of drying corresponding to 100% of hygroscopy, a field of hydration corresponding to a null advance and a thermal field at the temperature of reference.
2 Reference solution

2.1 Method of calculating

One did not develop the analytical solution for this hydro-mechanical loading. Also, the reference solution is obtained numerically by using the software Scilab 2.7.2 for BETON_UMLV or python for BETON_BURGER. Each component of deformation is calculated separately:

- the deformations of endogenous withdrawal are given starting from the relation:
 \[\varepsilon_{re} = k_{re} \beta \]
 where \(\beta \) indicate the degree of hydration of material

- the deformations of withdrawal of desiccation are given starting from the relation:
 \[\dot{\varepsilon}_{rd} = k_{rd} C \]
 where \(C \) indicate the water content of material

- the deformations of thermal dilation are given starting from the relation:
 \[\varepsilon_{th} = \alpha(T - T_{ref}) \]
 where \(T \) and \(T_{ref} \) the temperature at the moment running and the temperature of reference of material indicate respectively

- the deformations of clean creep are calculated numerically by using a discretization identical to that established in Code_Aster for BETON_UMLV and an establishment according to a diagram clarifies for BETON_BURGER. The temporal discretization is then necessarily finer for the explicit diagram.

- the deformations of creep of desiccation are calculated analytically starting from the relation:

 \[\dot{\varepsilon}_{fd} = \frac{1}{\eta_{fd}} \left| h \right| \]
 where \(h = f(C) \) indicate the moisture of material

The results of calculation with Scilab are presented in the figure below.
2.2 Sizes and results of reference

The test is homogeneous. One tests the deformation in an unspecified node.

2.3 Uncertainties on the solution

Digital result got with Scilab 2.7.2 or python (SSNV180B.44)

2.4 Bibliographical references

3 Modeling A

3.1 Characteristics of modeling

Modeling 3D

3.2 Characteristics of the grid

Many nodes: 8
Many meshes: 1 of type HEXA 8, 6 of type QUAD 4

The following meshes are defined:

- S.ARR: NO3 NO7 NO8 NO4
- S.AVT: NO1 NO2 NO6 NO5
- S.DRT: NO1 NO5 NO8 NO4
- S.GCH: NO3 NO2 NO6 NO7
- S.INF: NO1 NO2 NO3 NO4
- S.SUP: NO5 NO6 NO7 NO8

The boundary conditions in displacement imposed are:

- On the nodes NO1, NO2, NO3 and NO4: DZ = 0
- On the nodes NO3, NO7, NO8 and NO4: DY = 0
- On the nodes NO2, NO6, NO7 and NO8: DX = 0

The loading is consisted by the same field of drying and of the same nodal force, 1/4 applied to the four nodes of S.SUP.
3.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{xx} with the node NO6 at moment 648000</td>
<td>‘SOURCE_’</td>
<td>-4.081E-04</td>
<td>0,50%</td>
</tr>
<tr>
<td>ε_{xx} with the node NO6 at moment 6480000</td>
<td>‘ANALYTICAL’</td>
<td>-5.25E-04</td>
<td>0,50%</td>
</tr>
<tr>
<td>ε_{xx} with the node NO6 at moment 64800000</td>
<td>‘ANALYTICAL’</td>
<td>-9.065E-04</td>
<td>0,50%</td>
</tr>
<tr>
<td>ε_{xx} with the node NO6 at moment 648000000</td>
<td>‘ANALYTICAL’</td>
<td>-2.299E-03</td>
<td>0,50%</td>
</tr>
<tr>
<td>EPFP_ELNO/EPZZ With the node NO6 at moment 648000000</td>
<td>‘ANALYTICAL’</td>
<td>-4.198E-04</td>
<td>0,50%</td>
</tr>
<tr>
<td>EPFD_ELNO/EPZZ With the node NO6 at moment 648000000</td>
<td>‘ANALYTICAL’</td>
<td>-1.132E-3</td>
<td>0,50%</td>
</tr>
<tr>
<td>EPVC_ELNO/EPTHER_L With the node NO1 at moment 648000000</td>
<td>‘NON_DEFINI’</td>
<td>2.0E-4</td>
<td>0,50%</td>
</tr>
<tr>
<td>EPVD_ELNO/EPTHER_L With the node NO1 at moment 648000000</td>
<td>‘NON_DEFINI’</td>
<td>-1.13208E-3</td>
<td>0,50%</td>
</tr>
<tr>
<td>EPVC_ELNO/EPTHER_L With the node NO1 at moment 648000000</td>
<td>‘NON_DEFINI’</td>
<td>-4.1839E-4</td>
<td>0,50%</td>
</tr>
</tbody>
</table>

One tests the deformations due to the creep of desiccation as well as the deformations related to the variables of orders on the first point of Gauss of the mesh M_1:

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPThER_L at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>8.3E-6</td>
<td>0,10%</td>
</tr>
<tr>
<td>EPThER_T at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>8.3E-6</td>
<td>0,10%</td>
</tr>
<tr>
<td>EPThER_T at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>8.3E-6</td>
<td>0,10%</td>
</tr>
<tr>
<td>EPSECH at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>-2.075E-5</td>
<td>0,10%</td>
</tr>
<tr>
<td>EPHYDR at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>-6.0E-5</td>
<td>0,10%</td>
</tr>
<tr>
<td>EPXX at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>0.</td>
<td>0,10%</td>
</tr>
<tr>
<td>EPYY at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>0.</td>
<td>0,10%</td>
</tr>
<tr>
<td>EPZZ at the moment 49</td>
<td>‘NON_REGRESSION’</td>
<td>-4.69811E-5</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
4 Modeling B

4.1 Characteristics of modeling

Modeling 3D

4.2 Characteristics of the grid

Many nodes: 8
Many meshes: 1 of type HEXA 8
6 of type QUAD 4

The following meshes are defined:

- S_ARR NO3 NO7 NO8 NO4
- S_AVT NO1 NO2 NO6 NO5
- S_DRT NO1 NO5 NO8 NO4
- S_GCH NO3 NO2 NO6 NO7
- S_INF NO1 NO2 NO3 NO4
- S_SUP NO5 NO6 NO7 NO8

The boundary conditions in displacement imposed are:

- On the nodes NO1, NO2, NO3 and NO4: DZ = 0
- On the nodes NO3, NO7, NO8 and NO4: DY = 0
- On the nodes NO2, NO6, NO7 and NO8: DX = 0

The loading is consisted by the same field of drying and of the same nodal force, 1/4 applied to the four nodes of S_SUP.
4.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_{zz} with the node NO6 at moment 648000</td>
<td>'SOURCE_EXTERNE'</td>
<td>-4.15E-04</td>
<td>0,30%</td>
</tr>
<tr>
<td>ϵ_{zz} with the node NO6 at moment 6480000</td>
<td>'SOURCE_EXTERNE'</td>
<td>-5.82E-04</td>
<td>0,30%</td>
</tr>
<tr>
<td>ϵ_{zz} with the node NO6 at moment 64800000</td>
<td>'SOURCE_EXTERNE'</td>
<td>-1.36E-03</td>
<td>0,20%</td>
</tr>
<tr>
<td>ϵ_{zz} with the node NO6 at moment 648000000</td>
<td>'SOURCE_EXTERNE'</td>
<td>-4.38E-03</td>
<td>0,20%</td>
</tr>
<tr>
<td>EPVC_ELNO/EPTHHER_L With the node NO6 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>2.0E-4</td>
<td>1E-6</td>
</tr>
<tr>
<td>EPVC_ELNO/EPTHHER_NR With the node NO6 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>2.0E-4</td>
<td>1E-6</td>
</tr>
<tr>
<td>EPVC_ELNO/EPTHHER_T With the node NO6 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>2.0E-4</td>
<td>1E-6</td>
</tr>
<tr>
<td>EPVC_ELNO/EPSECH With the node NO6 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>-5.0E-4</td>
<td>1E-6</td>
</tr>
<tr>
<td>EPVC_ELNO/EPHYDR With the node NO6 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>-6.0E-5</td>
<td>1E-6</td>
</tr>
<tr>
<td>EPVF_ELNO/EPZZ With the node NO6 at moment 64800000</td>
<td>'SOURCE_EXTERNE'</td>
<td>2.5E3</td>
<td>4th-3</td>
</tr>
<tr>
<td>EPVD_ELNO/EPZZ With the node NO6 at moment 64800000</td>
<td>'SOURCE_EXTERNE'</td>
<td>-1.132E-3</td>
<td>1E-3</td>
</tr>
<tr>
<td>EPVC_NOEU/EPTHHER_L With the node NO1 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>2.0E-4</td>
<td>1E-6</td>
</tr>
<tr>
<td>EPVD_NOEU/EPTHHER_L With the node NO1 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>-1.132E-3</td>
<td>1E-6</td>
</tr>
<tr>
<td>EPVP_NOEU/EPZZ With the node NO1 at moment 64800000</td>
<td>'ANALYTICAL'</td>
<td>-2.5024E-3</td>
<td>1E-6</td>
</tr>
</tbody>
</table>

One tests the deformations due to the creep of desiccation as well as the deformations related to the variables of orders on the first point of Gauss of the mesh M_1 for the sequence number 49 of the concept result:

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPHER_L</td>
<td>'ANALYTICAL'</td>
<td>8.3E-6</td>
<td>0,0001%</td>
</tr>
<tr>
<td>EPHER_T</td>
<td>'ANALYTICAL'</td>
<td>8.3E-6</td>
<td>0,0001%</td>
</tr>
<tr>
<td>EPHER_T</td>
<td>'ANALYTICAL'</td>
<td>8.3E-6</td>
<td>0,0001%</td>
</tr>
<tr>
<td>EPSECH</td>
<td>'ANALYTICAL'</td>
<td>-2.075E-5</td>
<td>0,0001%</td>
</tr>
<tr>
<td>EPHYDR</td>
<td>'ANALYTICAL'</td>
<td>-6.0E-5</td>
<td>0,0001%</td>
</tr>
<tr>
<td>EPXX (Creep of desiccation)</td>
<td>'ANALYTICAL'</td>
<td>0.</td>
<td>0,0001%</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
<table>
<thead>
<tr>
<th>EPYY (Creep of desiccation)</th>
<th>‘ANALYTICAL’</th>
<th>0.</th>
<th>0,0001%</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPZZ (Creep of desiccation)</td>
<td>‘ANALYTICAL’</td>
<td>-4.69811E-5</td>
<td>0,10%</td>
</tr>
</tbody>
</table>
5 Summary of the results

Values obtained with Code_Aster are in agreement with the digital values of the solution of reference.