SSNV508 – Bloc in plane constraints with interface, traction and side compression, for quadratic elements X-FEM

Summary:

The purpose of this test is to validate the deformation of an interface introduced into a rectangular parallelepipedic very thin plate within a framework X-FEM. The structure is requested in traction and is subjected to a linear side pressure. The interface is represented by a level set plane and horizontal cutting elements or coinciding with their edges. It utilizes the elements X_{-FEM} [R7.02.12] P_2 (displacement) which has degrees of freedom of displacement in each node. With the problem is dealt in 2D and 3D.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
1 Problem of reference

1.1 Geometry 2D

The structure is a rectangle made up of two of the same plates material, separated by an interface.

Dimensions of the plate, to which the pressures are applied, are:

\[L_X = 2 \text{ m}, \quad L_Y = 1.8 \text{ m} \]

The second plate has following dimensions:

\[L_X = 2 \text{ m}, \quad L_Y = 1.2 \text{ m} \]

The position of the points of reference east:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>1.8</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Geometry 3D

The structure is a rectangular parallelepiped made up by two of the same plates material, separated by an interface.

Dimensions of the plate of the top, to which the pressures are applied, are:

\[L_X = 2 \text{ m}, \quad L_Y = 1.8 \text{ m}, \quad L_Z = 0.01 \text{ m} \]

The second plate in lower part has following dimensions:

\[L_X = 2 \text{ m}, \quad L_Y = 1.2 \text{ m}, \quad L_Z = 0.01 \text{ m} \]

The position of the points of reference east:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1.8</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>1.8</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A'</td>
<td>-1</td>
<td>0</td>
<td>-0.01</td>
</tr>
<tr>
<td>B'</td>
<td>1</td>
<td>0</td>
<td>-0.01</td>
</tr>
<tr>
<td>C'</td>
<td>1</td>
<td>1.8</td>
<td>-0.01</td>
</tr>
<tr>
<td>D'</td>
<td>-1</td>
<td>1.8</td>
<td>-0.01</td>
</tr>
<tr>
<td>O'</td>
<td>0</td>
<td>0</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
1.3 Material properties

Poisson's ratio: 0.2
Young modulus: $1 \times 10^{10} \text{ N/m}^2$

1.4 Boundary conditions and loadings

The lower plate ($y<0$) is blocked by an embedding of its lower face.
The plan $ABCD$ is blocked in the direction e_z.
In the case 3D, the plan ($x=0$) is blocked in the direction e_x, and in the case 2D, it is the line ($x=0$) who is blocked in the direction e_x.
The higher plate ($y>0$) is subjected to a pressure distributed horizontal acting on the side faces $P = \pm (-5 \times 10^4 y + 1 \times 10^5) \text{ N/m}^2$ (according to the principle of compression). One applies a quadratic displacement of traction to it to the higher face $d = -2.5 \times 10^{-6} x^2 + 1.1 \times 10^{-5} \text{ m}$.

Figure 1: Geometry of the structure and positioning of the interface and loadings 3D
2 Reference solution: analytical in plane constraints

2.1 Solution 2D

While placing itself in the Cartesian reference mark \((x, y)\), the displacement of any point \(M(x, y)\) higher plate is written:

\[
u(x, y) = u_x(x, y) \hat{e}_x + u_y(x, y) \hat{e}_y
\]

éq 2-1

Remarks :

- The higher plate and the lower plate are dissociated owing to the fact that the interface separates the plate into two completely. The plate lower being embedded than its base, it results from it that it is completely motionless and that one makes carry the analytical study only on the higher plate.

One breaks up the components of displacement in the base \([-1, x, y, x^2, y^2, xy, x^2y, xy^2]\):

\[
u_x(x, y) = I_1 + I_2 x + I_3 y + I_4 x^2 + I_5 y^2 + I_6 xy + I_7 x^2 y + I_8 y^2 x
\]

éq 2-2

\[
u_y(x, y) = J_1 + J_2 x + J_3 y + J_4 x^2 + J_5 y^2 + J_6 xy + J_7 x^2 y + J_8 y^2 x
\]

éq 2-3

The problem has a geometrical symmetry and of loading compared to the y-axis. That implies:

\[
I_1 = I_3 = I_4 = I_5 = I_7 = J_2 = J_6 = J_8 = 0
\]

éq 2-4

The equilibrium equations local expressed in the Cartesian reference mark gives:

\[
I_8 = J_7 = 0
\]

éq 2-5

\[
I_6 = -\frac{2(1-v)}{1+v} J_4 - \frac{4}{1+v} J_5
\]

éq 2-6

By applying the limiting conditions of Dirichlet of the higher face \(d = d_2 x^2 + d_6\), one from of deduced:

\[
J_4 = J_6 = -2.5 \times 10^{-6}
\]

éq 2-7

\[
J_1 + J_3 L_y + J_5 L_y^2 = d_6
\]

éq 2-8

By applying the limiting conditions of Neumann of the side edges \(P = p_1 y + p_0\) on the constraints resulting from the law of Hooke generalized:

\[
J_3 = -\frac{d_2}{2 + v} + \frac{p_0 (1 + v)}{2} = -0.5 \times 10^{-6}
\]

éq 2-9

\[
J_6 = -\frac{2d_2 (1-v)}{1+v} p_0 - \frac{4J_5}{1+v} = -\frac{5}{3} \times 10^{-6}
\]

éq 2-10

\[
J_2 = -\frac{1-v}{E} p_0 - v J_3
\]

éq 2-11

The interface is a free edge, i.e. the vector forced in any point of this surface in the normal direction external with the structure is null:

\[
J_3 = \frac{\sqrt{p_0}}{E} = 2.10^{-6}
\]

éq 2-12

\[
J_2 = -\frac{p_0}{E} = -1.10^{-6}
\]

éq 2-13

Consequently, by combining the results and expressions obtained, one draws \(J_1:\)

\[
J_1 = d_6 - J_3 L_y - J_5 L_y^2 = 8.02 \times 10^{-6}
\]

éq 2-14

The solution obtained is the following one:
Moreover, the displacement imposed on the upper surface leads to:

$$u_y(x,y) = -1.10^{-6}(8.02 - 2.5x^2 - 0.5y^2)$$

eq 2-16

That implies:

$$u_y(x,y) = 1.10^{-6}(8.02 - 2.5x^2)$$

Finally, one obtains:

$$u_y(x,y,z) = -(10x + \frac{5}{3}xy) \cdot 10^{-6}$$

eq 2-29

$$u_y(x,y,z) = (8.02 + 2y - 2.5x^2 - 0.5y^2 - \frac{1}{3}z^2) \cdot 10^{-6}$$

eq 2-30

2.2 3D solution

According to the assumption of the plane constraints the stress field 3D does not vary in the direction z, which implies that the deformations of it are also independent. The problem can then be brought back to the problem in 2D (plan ABCD) for the resolution of the constraints and deformations.

In the case 3D, the solution on u_x and u_y thus have the following form:

$$u_x(x,y,z) = 1.10^{-6}(-10x - \frac{5}{3}xy + h_x(z))$$

$$u_y(x,y,z) = 1.10^{-6}(8.02 + 2y - 2.5x^2 + h_y(z))$$

eq 2-19

eq 2-20

Moreover, deformation on ε_x is written:

$$\varepsilon_x(x,y,z) = \frac{-v}{1-v} \big(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} \big) = 1.10^{-6}(2 + \frac{2}{3}y)$$

eq 2-21

With:

$$\varepsilon_x(x,y,z) = \frac{\partial u_y(x,y,z)}{\partial z}$$

eq 2-22

Consequently, by combining the results and expressions obtained, one obtains:

$$u_x(x,y,z) = 1.10^{-6}[(2 + \frac{2}{3}y)z + g(x,y)]$$

eq 2-23

According to $\varepsilon_x = 0$ and $\varepsilon_y = 0$, one obtains:

$$h_x(z) = C_1z + C_0$$

eq 2-24

$$h_y(z) = -\frac{2}{3}z + C_3z + C_5$$

eq 2-25

$$g(x,y) = -C_4z - C_3y + C_4$$

eq 2-26

The plan ABCD is blocked on the direction e_z, one obtains:

$$u_z(x,y,z=0) = 0$$

eq 2-27

That implies: $C_1 = C_3 = C_5 = 0$.

The plan is blocked on the direction e_x, one obtains:

$$u_x(x=0,y,z) = 0$$

eq 2-28

That implies: $C_0 = 0$.

Moreover, the displacement imposed on the upper surface leads to: $C_4 = 0$.

Finally, one obtains:

$$u_x(x,y,z) = -(10x + \frac{5}{3}xy) \cdot 10^{-6}$$

eq 2-29

$$u_y(x,y,z) = (8.02 + 2y - 2.5x^2 - 0.5y^2 - \frac{1}{3}z^2) \cdot 10^{-6}$$

eq 2-30
Maybe on the interface the following result:

\[u_x(x, y, z) = \left(2 + \frac{2}{3} y\right) z \cdot 10^{-6} \] \hspace{1cm} \text{éq 2-31}

\[u_y(x, y, z) = -1 \cdot 10^{-5} x \] \hspace{1cm} \text{éq 2-32}

\[u_y(x, y=0, z) = \left(8.02 - 2.5 x^2 - \frac{1}{3} z^2\right) \cdot 10^{-6} \] \hspace{1cm} \text{éq 2-33}

\[u_z(x, y=0, z) = 2.10^{-6} z \] \hspace{1cm} \text{éq 2-34}
3 Modeling A

3.1 Characteristics of modeling

Modeling: C PLAN.

The structure is a healthy rectangle, into which an interface is introduced directly into the command file using the operator DEFI_FISS_XFEM [U4.82.08]. The interface is present at a distance \(L_y = 1.8 \text{ m} \) higher edge of the plate.

3.2 Characteristics of the grid

Many nodes: 661
Many meshes and types: 200 QUAD8 for the plate and 50 SEG3 for the edges.

![Grid 2D quadrangle and position of the interface](image)

3.3 Sizes tested and results

Displacements resulting from the operator STAT_NON_LINE are post-treaties so as to recover the values with the nodes of the crack resulting from the new grid.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference (Aster)</th>
<th>Reference (Analytical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DX) at the point (A)</td>
<td>1.10^{-5}</td>
<td>Analytical</td>
</tr>
<tr>
<td>(DX) at the point (B)</td>
<td>-1.10^{-5}</td>
<td>Analytical</td>
</tr>
<tr>
<td>(DY) at the point (A)</td>
<td>5,52.10^{-6}</td>
<td>Analytical</td>
</tr>
<tr>
<td>(DY) at the point (B)</td>
<td>5,52.10^{-6}</td>
<td>Analytical</td>
</tr>
<tr>
<td>(DY) at the point (O)</td>
<td>8,02.10^{-6}</td>
<td>Analytical</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3.4 Comments

This valid test:

• the calculation of the matrix of rigidity and the vectors second members (taken into account of the pressure distributed on quadratic elements of edges),

• postprocessing X-FEM elements P^2.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
4 Modeling B

4.1 Characteristics of modeling

Modeling: C_PLAN.

The structure is a healthy rectangle, into which an interface is introduced directly into the command file using the operator DEFI_FISS_XFEM [U4.82.08]. The interface is present at a distance $L_y=1.8\ m$ higher edge of the plate.

4.2 Characteristics of the grid

Many nodes: 597
Many meshes and types: 180 QUAD8 for the plate and 46 SEG3 for the edges.

![Grid 2D quadrangle and position of the interface](image)

Figure 4.2 -a: Grid 2D quadrangle and position of the interface

4.3 Sizes tested and results

Displacements resulting from the operator STAT_NON_LINE are post-taities in order to manner to recover the values with the nodes of the crack resulting from the new grid.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference</th>
<th>Aster</th>
<th>tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX at the point A</td>
<td>1.10^{-5}</td>
<td>Analytical</td>
<td>1.10^{-12}</td>
</tr>
<tr>
<td>DX at the point B</td>
<td>-1.10^{-5}</td>
<td>Analytical</td>
<td>1.10^{-12}</td>
</tr>
<tr>
<td>DY at the point</td>
<td>$5.52.10^{-6}$</td>
<td>Analytical</td>
<td>1.10^{-12}</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
4.4 Comments

This valid test:

- the calculation of the matrix of rigidity and the vectors second members (taken into account of the pressure distributed on quadratic elements of edges),
- under cutting (configuration in right interface and elements on right board),
- postprocessing X-FEM elements P^2.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>at the point</td>
<td>5.52 10^{-6}</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DY</td>
<td>at the point</td>
<td>8.02 10^{-6}</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Modeling C

5.1 Characteristics of modeling

Modeling: 3D.

The structure is parallelepipedic rectangular healthy, into which an interface is introduced directly into the command file using the operator `DEFI_FISS_XFEM` [U4.82.08]. The interface is present at a distance \(L_y = 1.8 \) m higher edge of the plate.

5.2 Characteristics of the grid

Many nodes: 8644
Many meshes and types: 6989
of which \(\text{TRIA6}: 2600 \)
of which \(\text{TETRA10}: 4389 \)

5.3 Sizes tested and results

Displacements resulting from the operator `STAT_NON_LINE` are post-treated so as to recover the values with the nodes of the crack resulting from the new grid.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference</th>
<th>Aster</th>
<th>tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DX) on the line (AA')</td>
<td>(1.10^4)</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DX) on the line (BB')</td>
<td>(-1.10^5)</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DY) at the point (A')</td>
<td>(5.52.10^6)</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DY) at the point (B')</td>
<td>(5.52.10^6)</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DY) at the point (O)</td>
<td>(8.02.10^6)</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DZ) on the line (A'B')</td>
<td>(-2.0.10^8)</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
</tbody>
</table>
6 Modeling D

6.1 Characteristics of modeling

Modeling: 3D.

The structure is parallelepipedic rectangular healthy, into which an interface is introduced directly into the command file using the operator `DEFI_FISS_XFEM` [U4.82.08]. The interface is present at a distance \(L_Y = 1.8 \text{ m} \) higher edge of the plate.

6.2 Characteristics of the grid

Many nodes: 5653
Many meshes: 3800
of which `SEG3`: 100
of which `TRIA6`: 2400
of which `QUAD8`: 100
of which `PENTA15`: 1200

6.3 Sizes tested and results

Displacements resulting from the operator `STAT_NON_LINE` are post-treaties so as to recover the values with the nodes of the crack resulting from the new grid.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference</th>
<th>Aster</th>
<th>tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DX) on the line (AA')</td>
<td>(1.10^{-5})</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DX) on the line (BB')</td>
<td>(-1.10^{-5})</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DY) at the point (A')</td>
<td>(5.52.10^{-6})</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DY) at the point (B')</td>
<td>(5.52.10^{-6})</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DY) at the point (O)</td>
<td>(8.02.10^{-6})</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
<tr>
<td>(DZ) on the line (A'B')</td>
<td>(-2.0.10^{-8})</td>
<td>Analytical</td>
<td>(1.10^{-10})</td>
</tr>
</tbody>
</table>
7 Modeling E

7.1 Characteristics of modeling

Modeling: 3D.

The structure is parallelepipedic rectangular healthy, into which an interface is introduced directly into the command file using the operator `DEFI_FISS_XFEM [U4.82.08]`. The interface is present at a distance $L_y=1.8 \, m$ higher edge of the plate.

7.2 Characteristics of the grid

Many nodes: 4453
Many meshes: 2000
of which SEG3: 100
of which QUAD: 1300
of which HEXA20: 600

7.3 Sizes tested and results

Displacements resulting from the operator `STAT_NON_LINE` are post-treaties so as to recover the values with the nodes of the crack resulting from the new grid.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Reference</th>
<th>Aster</th>
<th>tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX on the line AA'</td>
<td>1.10^4</td>
<td>Analytical</td>
<td>1.10^{-10}</td>
</tr>
<tr>
<td>DX on the line BB'</td>
<td>-1.10^5</td>
<td>Analytical</td>
<td>1.10^{-10}</td>
</tr>
<tr>
<td>DY at the point A'</td>
<td>$5,52.10^6$</td>
<td>Analytical</td>
<td>1.10^{-10}</td>
</tr>
<tr>
<td>DY at the point B'</td>
<td>$5,52.10^6$</td>
<td>Analytical</td>
<td>1.10^{-10}</td>
</tr>
<tr>
<td>DY at the point O</td>
<td>$8,02.10^6$</td>
<td>Analytical</td>
<td>1.10^{-10}</td>
</tr>
<tr>
<td>DZ on the line $A'B'$</td>
<td>$-2,0.10^8$</td>
<td>Analytical</td>
<td>1.10^{-10}</td>
</tr>
</tbody>
</table>
8 Summary of the results of modeling

The goals of this test are achieved.

- It was a question of showing the feasibility of the taking into account of enrichment by the Heaviside function of the classical functions of form on quadratic elements. Only the case of a crack crossing the structure completely was considered (interface).

- The method is validated in 2D, \(P_2 \) on a grid quadrangle.

- The method is validated in 3D, \(P_2 \) on a rectangular parallelepipedic grid.

- One obtains a better solution with modeling \(C_{\text{PLAN}} \) that modeling 3D.