**Summary:**

The purpose of this test is principal to check the modeling of the elements reinforced concrete under thermal loading according to three techniques:

- Model a: Models hull: DKT + GRILLE_EXCENTREE
- Model b: Models solid: Voluminal + GRILLE_MEMBRANE
- Model C: Solid model: Voluminal + MEMBRANE

The objective is to check the mechanical answer by comparison with a reference solution obtained analytically.

Moreover, it tests, in modeling B, the functionality MATRICE=ELASTIQUE of STAT_NON_LINE for the elements GRILLE_MEMBRANE, as well as the options EPVC_ELGA, EPME_ELGA and EPSP_ELGA.

In modeling C, one also tests the calculation of the options EFGE_ELGA and EFGE_ELNO on the elements of MEMBRANE (into linear and non-linear).
1 Problem of reference

1.1 Geometry

Square plate:
- Length: \( l = 1.0 \) m
- Thickness: \( e_p = 0.2 \) m

Reinforcements:
- Section: \( S_a = 0.01 \) m\(^2\)
- Offsetting: \( e = -0.01 \) m

1.2 Properties of materials

Concrete:
- Young modulus, \( E = 3 \times 10^{10} \) Pa
- Poisson's ratio, \( \nu = 0.0 \)
- Thermal dilation coefficient, \( \alpha = 10^{-5} \) K\(^{-1}\)

Steel:
- Young modulus, \( E = 2 \times 10^{11} \) Pa
- Poisson's ratio, \( \nu = 0.0 \)
- Thermal dilation coefficient, \( \alpha = 10^{-5} \) K\(^{-1}\)

1.3 Boundary conditions and loadings

On with dimensions one \( A \) one blocks displacements according to \( X \) and \( Z \) and rotation around \( Y \):
\[
U_x = 0.0; U_z = 0.0; R_y = 0.0
\]

On the edge \( B \) one blocks displacement according to \( Y \):
\[
U_y = 0.0
\]

The initial temperature is 20 °C for steel and the concrete.

One increases the temperature of steel to reach 120 °C.
2 Reference solution

2.1 Method of calculating

The total deflections in steel and the concrete are:

\[ e'_a = e_a^m + e_a^h \quad \text{and} \quad e'_b = e_b^m \quad \text{with} \quad e_a^h = \alpha \Delta T \]

Where \( e \) deformation of the average plan of the plate and \( \chi \) curve of the plate, two unknown factors to be found. By respecting kinematics (the sections remain plane), steel being perfectly related to the concrete, one has:

\[ e'_a = e - e \chi \quad \text{and} \quad e'_b = e - y \chi \]

The normal effort imposed on the plate is null:

\[ N = N_a + N_b = E_a S_a e_a^m + E_b \int e_b^m = E_a S_a (e - e \chi - e_a^h) + E_b S_b e = 0 \]

In the same way, the bending moment imposed on the plate is null:

\[ M = M_a + M_b = e E_a S_a e_a^m + E_b \int y e_b^m = E_a S_a (e e^2 - e e_a^h) + E_b I_b \chi = 0 \]

One thus obtains two equations to determine the two unknown factors:

\[ (E_a S_a + E_b S_b) e - E_a S_a e \chi = E_a S_a e_a^h \]
\[ E_a S_a e e + (E_b I_b - E_a S_a e^2) \chi = E_a S_a e e_a^h \]

One obtains:

\[ e = \frac{\alpha \Delta T}{A} \quad \text{and} \quad \chi = \frac{-\alpha \Delta T}{B} \]

with:

\[ A = 1 + \frac{E_b S_b + S_b e^2}{E_a S_a I_b} \quad \text{and} \quad B = e + \left( \frac{1}{E_a S_a} + \frac{1}{E_b S_b} \right) + \frac{E_b I_b e}{e} \]

From these values one can calculate:

- the lengthening of the plate: \( \Delta L = e L \)
- the rotation of the plate: \( R_y = \chi L \)
- the arrow at the end of the plate: \( f = -\chi \frac{L^2}{2} \) or in the middle of the plate \( f = -\chi \frac{L^2}{8} \)
- the normal constraint in steel: \( \sigma_a = E_a (e - e \chi - e_a^h) \)
- normal effort in the concrete: \( N_b = E_b S_b \epsilon \)

2.2 Sizes and results of reference

One calculates the lengthening and the arrow of the plate (displacement \( U_x \) and \( U_z \) of a node of the edge \( C \) plate), rotation (虫 \( R_y \) constant on the length), the normal effort in the reinforcements, the normal effort in the concrete \( N_b \).

2.3 Uncertainties on the solution

Exact solution.
3 Modeling A

3.1 Characteristics of modeling

Modeling:
1 element DKT (GEOB) superimposed to 1 element GRILLE_EXCENTRE (GEOA) supported on the same nodes.

Boundary conditions:
Nodes NO1 and NO4: \( DX = 0, DZ = 0, DRY = 0 \).
Nodes NO1 and NO2: \( DY = 0 \).

Thermal loading:
The concrete remains at \( 20^\circ C \).
Steel passes from \( 20^\circ C \) with \( 120^\circ C \) between the moments 0 and 1.
The temperature of reference is in both cases of \( 20^\circ C \).

3.2 Characteristics of the grid

Nodes: 4
Meshes: 1 QUAD4 for the concrete and 1 QUAD4 for steel

3.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of Reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement ( DX ) in NO2</td>
<td>'ANALYTICAL'</td>
<td>1.4285714E-04</td>
<td>0.0001%</td>
</tr>
<tr>
<td>Displacement ( DZ ) in NO2</td>
<td>'ANALYTICAL'</td>
<td>2.1428571E-03</td>
<td>0.0001%</td>
</tr>
<tr>
<td>Rotation ( RY ) in NO2</td>
<td>'ANALYTICAL'</td>
<td>-4.2857143E-03</td>
<td>0.0001%</td>
</tr>
<tr>
<td>Constraint SIXX in the mesh steel AMA1</td>
<td>'ANALYTICAL'</td>
<td>-8.571429E+07</td>
<td>0.0001%</td>
</tr>
<tr>
<td>Effort NXX in the mesh concrete MA1</td>
<td>'ANALYTICAL'</td>
<td>8.571429E+05</td>
<td>0.0001%</td>
</tr>
</tbody>
</table>
4 Modeling B

4.1 Characteristics of modeling

Modeling:
Elements 3D linear (GEOB) and elements GRILLE_MEMBRANE (GEOA) supported on the nodes of the lower face.

Boundary conditions:
Face A: blocked by $DX = 0$
Line $P1 - P4$: blocked by $DZ = 0$
Not $P1$: blocked by $DY = 0$

Thermal loading:
The concrete remains with $20^\circ C$.
Steel passes from $20^\circ C$ with $120^\circ C$ between the moments 0 and 1.
The temperature of reference is in both cases of $20^\circ C$.

Note:
Compared to other modelings, a non-linear calculation with the behavior GRILLE_ISOT_LINE is added to validate the option EPSP_ELGA.
Parameters of material ECRO_LINE used are the following: $D_{SIGM_EPSI} = 0.5E11$, $SY = 1E7$.

4.2 Characteristics of the grid

Nodes: 243
Meshes: 104 CUB8 for the concrete and 52 QUAD4 for steel

4.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Identification</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement $DX$ at the point PMB</td>
<td>‘ANALYTICAL’</td>
<td>7.19892100E-05</td>
<td>1.00%</td>
</tr>
<tr>
<td>Displacement $DZ$ at the point PMB</td>
<td>‘ANALYTICAL’</td>
<td>5.35714274E-04</td>
<td>1.05%</td>
</tr>
<tr>
<td>Constraint $SIXX$ in steel at the point LDC</td>
<td>‘ANALYTICAL’</td>
<td>-8.571429E+07</td>
<td>1.00%</td>
</tr>
<tr>
<td>Constraint $SIXX$ in the concrete at the point PMB</td>
<td>‘ANALYTICAL’</td>
<td>4.52857145E+06</td>
<td>1.00%</td>
</tr>
</tbody>
</table>

Note:
The values of displacements and constraints are evaluated in the center of the plate because in modeling 3D there are effects edge free to the end, not considered by the analytical solution.
Validation of EPVC_ELGA, EPME_ELGA and EPSP_ELGA on the elastic design (tests on EPSI_ELGA and SIEF_ELGA are used for obtaining of the values of reference):

<table>
<thead>
<tr>
<th>Mome nt</th>
<th>Mesh/Not</th>
<th>Field/Component</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>M107/1</td>
<td>EPIF/EXX</td>
<td>’NON REGRESSION’</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>M107/1</td>
<td>EPVC/EPTHER_L</td>
<td>’ANALYTICAL’</td>
<td>1.0E-03</td>
<td>0.1</td>
</tr>
<tr>
<td>1.0</td>
<td>M107/1</td>
<td>EPME/EXX</td>
<td>’NON REGRESSION’</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>M107/1</td>
<td>EPSP/EXX</td>
<td>’ANALYTICAL’</td>
<td>0.</td>
<td>-</td>
</tr>
</tbody>
</table>

Complement of validation of EPME_ELGA and EPSP_ELGA on an unelastic calculation:

<table>
<thead>
<tr>
<th>Mome nt</th>
<th>Mesh/Not</th>
<th>Field/Component</th>
<th>Type of reference</th>
<th>Value of reference</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>M107/1</td>
<td>SIEF/SIXX</td>
<td>’NON REGRESSION’</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>M107/1</td>
<td>EPME/EPXX</td>
<td>’NON REGRESSION’</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>M107/1</td>
<td>EPSP/EPXX</td>
<td>’NON REGRESSION’</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5 Modeling C

5.1 Characteristics of modeling

Modeling:
Elements 3D linear (GEOB) and elements MEMBRANE (GEOA) supported on the nodes of the lower face.

Boundary conditions and thermal loading:
Identical to modeling B.

5.2 Characteristics of the grid

Grid identical to modeling B.

5.3 Values tested and results

Values identical to modeling B.

Note:
Validation of the options EFGE_ELGA and EFGE_ELNO is made by inter comparison with the fields SIEF_ELGA and SIEF_ELNO: these fields have the same contents.
6 Summary of the results

This test in the case of compares the solutions obtained with three types of modeling with an analytical solution a reinforced concrete plate subjected to a thermal loading.

- **Model hull:** DKT + GRILLE_EXCENTREE
- **Solid model:** Voluminal + GRILLE_MEMBRANE
- **Solid model:** Voluminal + MEMBRANE

The assessment of the comparisons indicates a negligible difference between the results. Only one finite element is sufficient to find the analytical solution in the case DKT + GRILLE_EXCENTREE.

In the voluminal cases with GRILLE_MEMBRANE or MEMBRANE, the error is lower than 1% for a sufficiently fine grid (26 elements in the length).