WTNV138 - Triaxial compression test not drained with the model VISC_DRUC_PRAG

Summary

This test makes it possible to validate the model VISC_DRUC_PRAG with hydraulic coupling. It is about a triaxial compression test in not drained condition. The aspect not drained is modelled by a worthless voluminal deformation of the skeleton and the hydraulic coupling is taken into account, the sample is completely saturated, the incompressible skeleton and the fluid being supposed.

By reason of symmetry, one is interested only in the eighth of a sample subjected to a triaxial compression test. The level of containment is of 8 MPa.
1 Problem of reference

1.1 Geometry

Coordinates of the points (in meters):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.</td>
<td>0.</td>
<td>0.5</td>
<td>1.</td>
</tr>
<tr>
<td>y</td>
<td>0.</td>
<td>0.</td>
<td>0.5</td>
<td>1.</td>
</tr>
<tr>
<td>z</td>
<td>0.</td>
<td>1.</td>
<td>0.5</td>
<td>0.</td>
</tr>
</tbody>
</table>

height: $h = 1 \text{ m}$
width: $l = 1 \text{ m}$
thickness: $e = 1 \text{ m}$

1.2 Material property

elastic properties under the keyword **ELAS**:

$E = 5000.0 \text{ MPa}$
$\nu = 0.12$
$\alpha = 0.0$

viscoplastic properties under the key **VISC_DRUC_PRAG**:

$P_{ref} = 0.1 \text{ MPa}$
$A = 1.5 \times 10^{-12} \text{ in } s^{-1}$
$n = 4.5$
$p_{pc} = 0.015$
$p_{ul} = 0.028$
$\alpha_0 = 0.065$
$\alpha_{pc} = 0.26$
\[\alpha_{ult} = 0.091 \]
\[R_0 = 1.3021 \text{ MPa} \]
\[R_{pic} = 6.24808 \text{ MPa} \]
\[R_{ult} = 1.30808 \text{ MPa} \]
\[\beta_0 = -0.15 \]
\[\beta_{pic} = 0. \]
\[\beta_{ult} = 0.13 \]

1.3 Initial conditions, boundary conditions, and loading

Phase 1:
One brings the sample in a homogeneous state of effective stresses: \(\sigma^0_{xx} = \sigma^0_{yy} = \sigma^0_{zz} \), by imposing the corresponding total pressure on the front, side right-hand side and higher faces and by imposing worthless water pressures everywhere. Displacements are blocked on the faces postpones (\(u_x = 0 \)), side left (\(u_y = 0 \)) and lower (\(u_z = 0 \)).

Phase 2:
One maintains displacements blocked on the faces postpones (\(u_x = 0 \)), side left (\(u_y = 0 \)) and lower (\(u_z = 0 \)). On all the faces, hydraulic flows are worthless.

One applies a displacement forced to the higher face in order to obtain a deformation \(\varepsilon_z = -0.06 \) (counted starting from the beginning of phase 2). On the front faces and side right-hand side, one imposes boundary conditions in total constraint:
\[\sigma \cdot n = \sigma_0 (= 8 \text{ MPa}) \]
2 Modeling A

2.1 Characteristics of modeling

3D:

Cutting: 1 in height, in width and thickness.

Loading of phase 1:
Confining pressure: \(\sigma_{xx}^0 = \sigma_{yy}^0 = \sigma_{zz}^0 = -8 \, \text{MPa} \).

Coefficient of biot: 1
\(\text{UN} / \text{SUR} \) water: 0
Modeling: 3D_HM

2.2 Characteristic of the grid

Many nodes: 20
Many meshes and types: 1 \text{HEXA20} and 6 \text{QUA8}

2.3 Sizes tested and results

<table>
<thead>
<tr>
<th>Localization</th>
<th>Moment</th>
<th>Displacement</th>
<th>(\text{Aster})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not (D)</td>
<td>7000.</td>
<td>(DX)</td>
<td>-2.453 (10^{-3})</td>
</tr>
<tr>
<td>Not (D)</td>
<td>13000.</td>
<td>(DX)</td>
<td>2.632 (10^{-2})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localization</th>
<th>Moment</th>
<th>Constraint ((MPa))</th>
<th>(\text{Aster})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not (D)</td>
<td>7000.</td>
<td>(\sigma_{yy})</td>
<td>-8 (10^{-6})</td>
</tr>
<tr>
<td>Not (D)</td>
<td>13000.</td>
<td>(\sigma_{yy})</td>
<td>-14.28 (10^{-6})</td>
</tr>
</tbody>
</table>
3 Summary of the results

This case test is a test of nonregression developed to validate the model VISC_DRUC_PRAG in hydromechanics in not drained conditions.