WTNA112 – Thermal pressurization of a not drained saturated cylindrical test-tube

Summary:

It is about a problem of THM saturated and elastic. One increases the temperature of a sample not drained maintained with constant containment (constant total constraint at the edge). The resulting water pressure varies then linearly with the temperature according to a thermal coefficient of pressurization which one calculates analytically. The solution obtained here is thus to compare with an analytical solution.
1 Problem of reference

1.1 Geometry

A cylinder of ray is considered 1cm and height 1cm (either a grid corresponding to a square field of $1 \text{cm} \times 1 \text{cm}$, modeling being axisymmetric).

1.2 Properties of material

One chooses parameters here corresponding to a mudstone so as to obtain a coefficient of realistic thermal pressurization.

<table>
<thead>
<tr>
<th>Liquid water</th>
<th>Density (kg.m^{-3})</th>
<th>10³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specific heat with constant pressure (J.K^{-1})</td>
<td>4180</td>
</tr>
<tr>
<td></td>
<td>Dynamic viscosity of liquid water (Pa.s)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Thermal dilation coefficient of the liquid (K^{-1}) (so constant, cf following section)</td>
<td>1.1×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>Compressibility (Pa^{-1})</td>
<td>$K_e = 5.10^{-10}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid</th>
<th>Drained Young modulus E (Pa)</th>
<th>$3,14 \times 10^6$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poisson's ratio</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>Thermal dilation coefficient of the solid (K^{-1})</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State of reference</th>
<th>Porosity</th>
<th>0.18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature (K)</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Liquid pressure (Pa)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Homogenized coefficients</th>
<th>Homogenized density (kg.m^{-3})</th>
<th>2410</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient of Biot</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Intrinsic permeability (m^2)</td>
<td>$K_{im} = 10^{-21}$</td>
</tr>
<tr>
<td></td>
<td>Thermal conductivity</td>
<td>$\lambda_f = 1.61$</td>
</tr>
</tbody>
</table>

1.3 Boundary conditions and loadings

One imposes:

![Boundary conditions and loadings](image)
On the low and left edges: worthless displacements, hydraulic flow no one, worthless heat fluxes. They are conditions of symmetry.

On the edges high and right: Total constraint imposed on 12 MPa, hydraulic flow no one, imposed temperature function of time \(T(t) \) according to a linear slope such as:

\[
T(t) = T_0 + \frac{\Delta T}{t_{\text{sim}}} \quad \text{where } t_{\text{sim}} \text{ corresponds at the time of simulation (here } t_{\text{sim}} = 1h \text{) and } \Delta T \text{ temperature variation imposed during this time (here } \Delta T = 40^\circ C \).
\]

1.4 Initial conditions

\[P(x) = 4\text{MPa and } T(x) = T_0 = 20^\circ C \text{ everywhere.} \]

2 Reference solution

One \(R \) call that the contribution of water mass is written: \(m_w = \varphi \cdot \rho_w \cdot (1 + \varphi_v) \), which one can derive in the following form: \(\frac{d m_w}{d t} = \varphi \cdot \rho_w (1 + \varphi_v) + \rho_w \varphi (1 + \varphi_v) + \rho_w \varphi d \varphi_v \) with \(\varphi \) porosity eulérienne.

If one places oneself in assumption of small displacements, one will thus have:

\[
\frac{d m_w}{d t} = \varphi \cdot \rho_w (1 + \varphi_v) + \rho_w \varphi (1 + \varphi_v) + \rho_w \varphi d \varphi_v \tag{1}
\]

The variation of porosity is written according to the relation:

\[
\varphi = (b - \varphi) \left(d \varphi_v - 3 \alpha_0 dT + \frac{d p_w}{K_s} \right) \tag{2}
\]

with \(\alpha_0 \) the linear dilation of the skeleton (comparable to the porous environment). It is pointed out that the coefficient of Biot \(b \) and compressibility of the solid matter constituents modulates it \(K_s \) are connected to the “drained” module of compressibility of the porous environment \(K_0 \), such as:

\[b = 1 - \frac{K_0}{K_s} \]

In addition, the variation of the density of water is written:

\[
\frac{d \rho_w}{\rho_w} = \frac{d p_w}{K_w} - 3 \alpha_w dT \tag{3}
\]

with the module of compressibility of water \(K_w \) and its module of dilation \(\alpha_w \).

Lastly, if the law of behavior is elastic, it is pointed out that the deformation is connected to the effective constraint such as:

\[
d \varepsilon_v = \frac{d \sigma'}{K_0} + 3 \alpha_0 dT \tag{4}
\]

In addition, the formulation in total constraint, indicates to us that:

\[d \sigma' = d \sigma + b \cdot d p_w \], considering here that the mediums is with constant containment, one thus has:
\[d \sigma = b \, dp_w, \] which gives us with the final one
\[d \varepsilon_r = \frac{b \, dp_w}{K_0} + 3 \alpha_0 \, dT \] (5)

One can now inject (2), (3), (4) and (5) in the equation (1) and one obtains that:
\[\frac{dm_w}{\rho_w} = \left(\frac{b^2}{K_0} + \frac{|b - \varphi|}{K_s} + \frac{\varphi}{K_w} \right) dp_w + \varphi \left(3 \alpha_0 - 3 \alpha_w \right) dT \] (6)

Considering that the medium is not drained one thus has:
\[\left(\frac{b^2}{K_0} + \frac{|b - \varphi|}{K_s} + \frac{\varphi}{K_w} \right) dp_w = \varphi \left(3 \alpha_w - 3 \alpha_0 \right) dT \] (7)

What can be written in the form:
\[dp_w = \Lambda \, dT \] (8)

With \(\Lambda \) the thermal coefficient of pressurization such as:
\[\Lambda = \frac{\varphi \left(3 \alpha_w - 3 \alpha_0 \right)}{\left(\frac{b^2}{K_0} + \frac{|b - \varphi|}{K_s} + \frac{\varphi}{K_w} \right)} \]

It is noticed that this coefficient revealed the thermal differential \((\alpha_w - \alpha_0) \)

2.1 Thermal dilation of constant water

If \(\alpha_w = \text{cte} \), the digital application is immediate.

Digital application:

With the data defined previously, one obtains:
\[\Lambda = 2,25 \times 10^5 \, Pa. \, K^{-1} \]

What gives for a temperature variation \(\Delta T = 40^\circ C \), a variation of pressure of \(\Delta p = 9,01 \, MPa \).

2.2 Thermal dilation of water function of the temperature

In this case, one will write
\[\Lambda(T) = \frac{\varphi \left(3 \alpha_w(T) - 3 \alpha_0 \right)}{\left(\frac{b^2}{K_0} + \frac{|b - \varphi|}{K_s} + \frac{\varphi}{K_w} \right)} \]

\[dp_w = \Lambda(T) \, dT \]

To be able to integrate this formula, it is considered that the thermal dilation of water is a linear function of the temperature such as \(\alpha_w = a. T + b \). \(\Lambda(T) \) is then also a linear function which one integrates between the initial temperature \(T_0 \) and final temperature \(T_1 \), which gives:
\[\Delta p = \frac{A}{2} \cdot (T_2^2 - T_1^2) + B(T_2 - T_1) \]

with

\[A = \frac{3 \phi \alpha}{b^2 + \left(\frac{b - \phi}{K_s} + \frac{\phi}{K_w} \right)} \]

and

\[B = \frac{\phi \left(3b - 3 \alpha_0 \right)}{b^2 + \left(\frac{b - \phi}{K_s} + \frac{\phi}{K_w} \right)} \]

Digital application:

One takes here

\(a = 2.63 \times 10^{-6} \) and \(b = -7 \times 10^{-4} \) what corresponds to \(\alpha_w(293) = 6.67 \times 10^{-5} \, \text{K}^{-1} \) and \(\alpha_w(333) = 1.72 \times 10^{-4} \, \text{K}^{-1} \) and which constitutes realistic values for water.

Taking everything into account, one obtains for a temperature variation between 20°C and 60°C, a variation of pressure of \(\Delta p = 10.9 \, \text{MPa} \) and thus a final pressure of \(14.9 \, \text{MPa} \).
3 Modeling A

3.1 Characteristics of modeling A

- 20 × 20 elements Q_4 of equal width.
- Thermal dilation of constant water

3.2 Results of modeling A

Discretization in time: 10 pas de time of 180 s each one. The solution calculated by Aster which takes account of the movements of the fluid and heat (diffusive phenomena), it is normal not to obtain the reference solution exactly. The differences remain very weak.

Result at the final moment 3600 s:

<table>
<thead>
<tr>
<th>N° NODE</th>
<th>COOR _ X</th>
<th>COOR _ Y</th>
<th>Reference PRE 1 (MPa)</th>
<th>Aster PRE 1 (MPa)</th>
<th>Differences (%)</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>13,01</td>
<td>12,98</td>
<td>0,158</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.01</td>
<td>13,01</td>
<td>12,99</td>
<td>0,098</td>
<td>1</td>
</tr>
</tbody>
</table>
4 Modeling B

4.1 Characteristics of modeling B

It acts of the same modeling as previously but via the modules of orthotropism (although the test-tube is regarded as isotropic and that the characteristics remain the same ones in each direction). In theory the results should give the same thing exactly.

The model differs however here slightly and the analytical solution indicated previously is not completely any more exact. Indeed instead of the relation used into isotropic:

$$d \varphi = (b - \varphi) \left[d \varepsilon - 3 \alpha \varphi dT + \frac{d p}{K} \right]$$

The relation used in this case becomes tensorial (cf Doc. R7.01.11) and is:

$$d \varphi = B : d \varepsilon - \varphi d \varepsilon - 3 \alpha \varphi dT + \frac{d p}{M}$$

with

$$\frac{1}{M} = (B - \varphi \delta) : S^S_0 : \delta$$

where S^S_0 the matrix of flexibility of the skeleton, function of the Young modulus of the solid matrix E^S and of the Poisson’s ratio of the solid matrix ν^S.

In addition porosity cannot be integrated here analytically and is thus in an explicit way (porosity taken at previous time). The resolution is thus here less precise.

This modeling aims to quantify the difference obtained via this modeling.

4.2 Results of modeling B

One tests the same results as previously initially on 10 pas de time as for modeling A

Result at the final moment 3600 s:

<table>
<thead>
<tr>
<th>NODE</th>
<th>COOR_X</th>
<th>COOR_Y</th>
<th>Reference PRE1 (MPa)</th>
<th>Aster PRE1 (MPa)</th>
<th>Differences (%)</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>13.01</td>
<td>12.258</td>
<td>3.25</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.01</td>
<td>13.01</td>
<td>12.259</td>
<td>2.80</td>
<td>5</td>
</tr>
</tbody>
</table>

The results got here are a little less precise than previously what is explained by the explicit treatment of porosity.

To ensure itself some one tests the same case but with 15 pas de time:

Result at the final moment 3600 s:

<table>
<thead>
<tr>
<th>NODE</th>
<th>COOR_X</th>
<th>COOR_Y</th>
<th>Reference PRE1 (MPa)</th>
<th>Aster PRE1 (MPa)</th>
<th>Differences (%)</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>13.01</td>
<td>12.994</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.01</td>
<td>13.001</td>
<td>13.001</td>
<td>0.01</td>
<td>1</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
One converges perfectly towards the analytical solution.

5 Modeling C

5.1 Characteristics of modeling C

- 2 triangular elements
- Thermal dilation of water according to a linear law (cf section 2.2)

5.2 Results of modeling C

Discretization in time: 30 pas de time of 120 s each one. The solution calculated by Aster which takes account of the movements of the fluid and heat (diffusive phenomena), it is normal not to obtain the reference solution exactly. The differences remain very weak.

Result at the final moment 3600 s :

<table>
<thead>
<tr>
<th>NODE</th>
<th>COOR_X</th>
<th>COOR_Y</th>
<th>Reference PRE1 (MPa)</th>
<th>Aster PRE1 (MPa)</th>
<th>Differences (%)</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>14.9</td>
<td>14.84</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.01</td>
<td>14.9</td>
<td>14.84</td>
<td>0.7</td>
<td>1</td>
</tr>
</tbody>
</table>

6 Modeling D

6.1 Characteristics of modeling D

- Plane modeling ‘AXIS_THMS’
- Two laws of behavior are tested: LL hasoi mechanical ‘MOHR-COULOMB’ with the following properties:
 - COHESION = 100 GPa
 - PHI = 25
 - ANGDIL = 10
- Mechanical law ‘RANKINE’ with the following properties:
 - SIGMA_T = 10 Pa
- The elastic properties remain unchanged;
- Coupling ‘LIQU_SATU’
- 20×20 elements Q8 of equal width
- Dilation of water Constante

The cohesion of the law of Mohr-Coulomb and limit of traction of Rankine itsT takenS sufficient largeS so that the behavior remains elastic during the loading.

6.2 Results of modeling D

Discretization in time: 10 pas de time of 180 s each one. The solution calculated by Aster which takes account of the movements of the fluid and heat (diffusive phenomena), it is normal not to obtain the reference solution exactly. The differences remain very weak.

Result at the final moment 3600 s :

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
7 Summary of the results

The results are in coherence with the analytical solution.