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Quasi-static nonlinear algorithm (STAT_NON_LINE)

Summarized: 

Operator  STAT_NON_LINE [U4.51.03] of  Code_Aster allows a quasi-static request in the case of to integrate 
various types of non-linearities coming from the behavior of the material, of great geometrical transformations or 
the conditions of contact/friction. One describes the total algorithm of resolution here employed.

The integration of  the behavior  models itself  is  described in the documents [R5.03….]  and [R7.01….],  (for 
example [R5.03.02] for elastoplasticity), to which one will be able to refer for more details. 

For computations in great geometrical transformations, one will be able to consult for example the document 
[R5.03.20]  on  nonlinear  elasticity  in  large  displacements,  or  the  documents  [R5.03.21],  [R5.03.22]  on  the 
thermoelastoplasticity with isotropic hardening.

For  the  contact  friction,  there  exist  three  documents:  [R5.03.50]  on  the  discrete  formulation  of  the 
contact/friction,  [R5.03.52]  for  the  hybrid  formulation by elements  of  contact/friction,  and [R5.03.53]  on the 
contact in great slidings with method XFEM.

For all that relates to control, it is necessary to refer to the document  [R5.03.80].
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1 Presentation

1.1 General information

STAT_NON_LINE is  the  operator  of  Code_Aster making  it  possible  to  carry  out  nonlinear  mechanical 
computations when the effects of inertia are neglected (if one wants to take into account the effects of inertia, it 
is necessary to use DYNA_NON_LINE, see [R5.05.05]).

The computation relates a priori only to the mechanical variables (displacements, stresses, local variables) by 
excluding  any  coupling  with  other  physical  phenomena  (thermal,…).  Consequently,  the  associated  fields 
influencing  the  structural  mechanics  behavior  (thermal,  hydrous,  metallurgical  fields)  are  calculated  as  a 
preliminary  by  other  operators  (THER_LINEAIRE [U4.33.01],  THER_NON_LINE [U4.33.02]),  even  by  other 
codes (for example CODE_SATURNE for the mechanics of the fluids,…). 

There is an exception with regard to the modelization thermo-hydro-mechanics (modelization known as “THM”) 
for which STAT_NON_LINE treats the group of the coupled problem of the equations of diffusion of the thermal, 
of the pressure of (of) fluid (S) and of the mechanical equilibrium [R7.01.10].

It should be noted that when one speaks about time of computation in this document, one almost always 
refers  to  a  pseudo-TEMPS,  which  N  `does  not  have  physical  meaning  and  which  is  only  used  to 
parameterize the incremental  algorithm. However,  time keeps a physical  meaning in viscoplasticity and 
when the command variables depend on it.

1.2 Types of nonnonlinear

1.2.1 linearities Behaviors

the  nonlinear  behavior  models  are  described  in  the  documents  [R5.03….],  for  the  behavior  generals,  and 
[R7.01….] for the géo-materials. In STAT_NON_LINE, two families of behaviors are available:

•That which corresponds to the key word factor  COMP_ELAS (Behavior Elastic) led through the balance 
equation to a nonlinear  system explicitly  depending on the field of  displacements  u  compared to the 
reference  configuration,  and  parameterized  by  the time of  computation  (through  inter  alia  the  thermal 
evolution). For more details, one will be able to refer, for example, with the document [R5.03.20] concerning 
nonlinear elasticity in great transformations (very-elasticity).

•The  other  family,  which  corresponds  to  the  key  word  factor  COMP_INCR (Behavior Incremental),  is 
associated  with  behavior  models  expressed  by  an  implicit  differential  equation (for  example 
elastoplasticity, the visco - plasticity, hypo-elasticity, etc). In this case, the behavior model is integrated as 
presented for  example in  [R5.03.02]:  by connecting a  displacement  increment  u  calculated from a 
mechanical state given (the mechanical state being represented by a field of displacements u , a stress 
field    and a field of local variables   )  to the stress field at time of computation  t  .  The balance 
equation  thus  leads  to  a  nonlinear  system in  u ,  but  which  is  also  parameterized  by  the  time  of 
computation through the facts of the case (variation of the mechanical loading and thermal evolution for 
example).

It  is  necessary  to  have  for the  spirit  the  basic  difference  between  the  two  approaches.  The  elastic  case 
referenced  by  supposes  the  existence  of  a  state  of  ratio  to  which  the  elastic  strain  is  written:  this  state 
corresponds in a state without strain, nor forced. It is the “absolute” value of the loading which creates the strain. 
The incremental case leans on the state previously calculated and “forgets” any reference to the former states 
except that given by the local variables. In this case, it is the variation of the loading which modifies the state of 
the system: in particular, one needs a variation of the field of temperature to create thermal strains.

In both cases, one calculates the solution gradually. It is theoretically not essential in the nonlinear elastic case 
because it is not necessary to keep the memory of the former state (not of local variables), nor to evaluate a 
differential equation, but it may be that it not linearity of the required solution either too strong for the algorithm 
of resolution used, and that it is essential, for numerical reasons, to operate step by step.
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1.2.2  Great transformations

Whenever the assumption of the small disturbances (moderate displacements and strains) is not checked,  the 
method of resolution of the problem must then integrate the evolution of the geometry of the problem, handle a 
particular kinematics and use an adequate formulation of the constitutive law.

In  practice,  the  assumption of  the small  strains  can be  applied as long as the square of  the modulus of 
deformation remains lower than the accuracy of computations considered. In the same way, the assumption of 
small rotations can be applied as long as the product between the square of the swing angle and the modulus of 
deformation remains lower than the accuracy of computations considered.

Various alternatives exist within Code_Aster; our purpose is not here to make a detailed presentation of it and 
we  return  to  the  various  documents  treating  each  problems  specifically.  It  is  advisable  to  distinguish  the 
formulations which and the operate on massive isoparametric elements (2D or 3D) formulations being used for 
the structural elements (beams, plates and shells). For the cases of the massive isoparametric elements, one 
finds three great types of formulation of the kinematics for the case of the large deformations:

•Kinematics DEFORMATION= `PETIT_REAC' makes it possible to treat an unspecified constitutive law in large 
deformations. The model is written in small strains and the taking into account of the large deformations is 
done only by reactualizing the geometry. This formulation is not incrémentalement objective. Moreover, one 
can use it only if the behavior is isotropic, if the elastic strain are weak in front of plastic strains, if rotations 
remain weak (lower than  10 ° ) and if  a sufficiently fine discretization in time is adopted. Moreover, the 
absence of the geometrical contribution in the tangent matrix can sometimes make convergence difficult 
(see [R5.03.21 for more details).

•Kinematics DEFORMATION= `SIMO_MIEHE' makes it possible elastoplastic constitutive law to treat one with 
isotropic hardening in large deformations,  the model of ductility  fracture known as “Rousselier”  or  the 
élasto (visco) plasticity with phase change for the metallurgy (see [R5.03.21], [R5.03.06] and [R4.04.03]). 
This formulation is incrémentalement objective, without limitation on the level of the transformations applied 
but it is available only for the three quoted constitutive laws and allows to treat only the cases where the 
behavior is isotropic. 

•Kinematics  DEFORMATION=  `GDEF_HYPO_ELAS' makes  it  possible  to  treat  any  hypo-elastoplastic 
constitutive  law.  It  is  incrémentalement  objective,  without  limitation  on the level  of  the transformations 
applied but allows to treat only the cases where the elastic strain are small in front of the unrecoverable 
deformations (see [R5.03.24]) and if the behavior is isotropic elastic. 

To treat the elastic large deformations, it is necessary to employ another formalism, called via DEFORMATION = 
“GROT_GDEP” , which is usable for the behavior models very-elastics nonlinear in large displacements (see 
[R5.03.20]  and  [R5.03.22]  for  the  case  of  the  small  strains)  or  for  the  constitutive  law  hyper  elastic  (see 
[R5.03.19]). 

Lastly, for the structural elements (beam, plates or shells), there exist specific formulations.  One can quote:
•Beams in large displacements (see [R5.03.40]) or multifibre beams in large displacements (see [R3.08.09]). 

Keyword DEFORMATION = “GROT_GDEP”.
•Voluminal shell elements in nonlinear geometrical (see [R3.07.05]).

It does not exist of structural elements (beam, plate or shell) usable in large deformations in Code_Aster.

1.2.3 Unilateral contact and friction

For the contact and friction, one will refer to three documents: [R5.03.51] on the discrete contact with friction, 
[R5.03.52]  for the hybrid  formulation by elements of  contact/friction and [R5.03.53]  on the contact  in  great 
slidings with method XFEM.
    

1.3 Position of the nonlinear quasi-static problem
 
As a consequence of paragraph 1.1, one sees that it is legitimate to consider that the nonlinear problem has like 
unknown a displacement and that it is parameterized by time. That is to say thus the quasi-static nonlinear 
problem according to, statement of the principle of the virtual wors:
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{v
T .L int

u , t  = vT .Lext
 t       ∀v  tel que  B .v=0

B .u=ud  t 
 (1)

where:
• t  represent the variable of time
• u  is the field of displacement taken from a reference configuration
• v  is the kinematically admissible field of virtual displacement

the  relation  B .u=ud  t   corresponds  to  the  boundary  conditions  imposed  in  displacements  (imposed 

displacements, connections between degrees of freedom,…). B  is a linear operator of the space of the fields 

of displacements on a space of functions defined on part of edge of structure,  ud  is a function given on this 
part.

This first equation (equation 1) is the classical statement of the principle of the virtual wors. Lext  is the external 

mechanical loading to which the structure is subjected (pressure, imposed force,…) and L int  represents the 
internal  forces  of  the  problem  of  quasi-static  mechanics  nonlinear.  In  the  linear  case,  one  has 
L intu , t  = K .u , where K  is the stiffness matrix of structure.

In fact, more precisely, L int
u , t   is connected to the stress field   by the operator work of the virtual strains 

QT  according to the following relation:

L int
u , t =QT

u .  (2

In small displacements,  QT  is independent of displacements; for large displacements, it is not any more the 
case. One gives oneself a discretization of the time interval to calculating:

t [ t0 ,⋯ ,t i ,⋯ , tn ]  (3)

the stress field  i  at time t i  is written  ui ,i ,t i ,Hi−1 , if one notes i  the fields of command variables 

and  Hi−1  the last history of structure. For the elastic behaviors, the history does not intervene: the group 

Hi−1 is thus empty. For incremental behaviors, the history is all the states (fields of displacements, stresses 

and local variables) at previous time: Hi−1={u i−1 , i−1 , i−1 , t i−1 } .

In the general case, the dependence of the operator L int  is, as we saw in [§1.11.1], implicit compared to time: it 
results from the integration of the behavior model in time (for the problems of elastoplasticity for example). The 
explicit dependence compared to time appears behavior models in particular in the case of taking into account a 
phenomenon of hardening by time (time-hardening) or in the case of the aging.

The dualisation of the boundary conditions of Dirichlet B .u=ud  t   leads to the following problem [R3.03.01]:

{L
int
u , t BT .=L ext

 t 
B .u=ud  t 

 (4)

the unknowns are now, at any moment t , the couple u ,  , where   represents the Lagrange multipliers of 

the  boundary  conditions  of  Dirichlet  [R3.03.01].  The  vector  BT .  is  interpreted  like  the  opposite  of  the 
reactions of bearing to the corresponding nodes.

The formulation of  the quasi-static  problem consists  in expressing the equilibrium of  structure (the internal 
forces are equal to the external forces) for a continuation of times of computation {t i }1≤i≤ I  which parameterize 

the loading, one will note the quantities at time t i  by the index i  (for example L int
u i , t i=Li

int ):

{Li
int
BT . i=Li

ext

B .ui=ui
d  (5)
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What amounts cancelling in ui , i , t i  the vector R i ui , i , ti   says vector residue of equilibrium, defined 
by:

R iui , i , ti =Li
int
BT . i−Li

ext

B .ui−ui
d   (6)

the state of structure t 0  is supposed to be known by it. One carries out I  increments (or not) of load defined 
on Figure 1 -1.3-a.

 

t 0 t 1 t 2 . . . t I -1 t I 

1 2 I 
pas de  
charge 
n° instant 

 

Figure 1 -1.3-a

unknowns  is  calculated  in  an  incremental  way  by  the  total  algorithm  of  resolution  (even  for  the  elastic 
behaviors).  From  u i−1 , i−1  , solution satisfying the equilibrium in  t i−1 , one determines  ui  and   i  

which will make it possible to obtain the solution in t i :

{
ti=t i−1 t i
ui=ui−1ui
 i= i−1 i

 (7)

the increments  ui  and   i  are initially estimated by linearizing the problem compared to time around 

ui−1 , i−1 , ti−1  (phase known as of prediction or Eulerian). Then one uses a method of Newton or one of 

his alternatives to solve equation 5 in an iterative way (one calculates a continuation  ui
n , i

n
  where the 

exhibitor n  is the number of the iteration). Besides these variables, for the incremental behavior models, one 
needs to know in  t i−1

 the stress field  i−1
 and the field of local variables   i−1

 (confer [R5.03.02] for an 

example).
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2 Method of Newton

2.1 Principle of the method

the method of Newton is a classical method of resolution of the equations of the type searches of zero. Let us 
consider a nonlinear vector F  function of the vector x . One seeks the zero of this function, i.e.:

F x =0  (8)

the method of Newton consists in building a vector series xn  converging towards the solution x . To find the 

new one reiterated xn1 , one approaches F xn1
  by a development limited to the order one around xn  and 

one expresses who F xn1
  must be null:

0=F xn1
≈FxnF' xn xn1

−xn  (9)

That is to say still:

F '
xnxn1

−xn =−Fxn   (10)

Finally:

xn1
=xn−[F' xn ]

−1
.F xn  (11)

F '
x   is the tangent linear application associated with the function F  . The derivative at the point x  in the 

direction h  is defined like following directional derivative: 

F '
x .h=lim

0

Fx .h−Fx 


 (12)

the matrix of F '
x   in the bases chosen for the vector spaces concerned is called the jacobian matrix of F  at 

the point x  . When F  is a function of an Euclidean vector space with  actual values, F '
x   is a linear form, 

and one can show that there exists a vector (single), noted ∇ F x   and called the gradient of F  , such as: 

F '
x .h=hT .∇F x   (13)

I.e. the scalar product of h  and the gradient of F  . 

When one is close to the solution, the convergence of the method of Newton is quadratic i.e. the number of 
zeros after the comma in the error doubles with each iteration (0,19 – 0,036 – 0,0013 – 0,0000017 for example). 
But this method (using the true tangent) has several disadvantages:

•It requires the computation of the tangent to each iteration, which is all the more expensive as the size of the 
problem is large (especially if a direct solver is used), 

•If  the  increment  is  large,  the  tangent  (known  as  coherent  or  consistent)  can  lead  to  divergences  of  the 
algorithm, 

•It can not be symmetric, which obliges to use particular solvers.

For this reason one can use other matrixes instead of the tangent matrix: the elastic matrix, a tangent matrix 
obtained before, the symmetrized tangent matrix,…

2.2 Adaptation of the method of Newton with the posed problem

If  the boundary  conditions  of  Dirichlet  initially  are  forgotten,  one  must  solve  a  system (nonlinear  because 
dependant on ui ) of the form:

Li
int u i =Li

méca ui   (14)

where  Li
méca  from now on, at time,  t i the mechanical part  of the total external loading will indicate  Li

ext  in 

order to distinguish it from the thermal loading. Let us note that the mechanical loading Li
méca u i   can in the 
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case of depend on ui  displacements the forces known as “following” like the pressure or the centrifugal force 

(see [§2.72.7]). By means of the notations of [§2.12.1], that amounts cancelling the vector function R  definite 
by:

R ui , ti =Li
int
−Li

méca  (15)

the internal forces  Li
int  can  symbolically be noted  Qi

T . i ,  where  Qi
T  is the matrix associated with the 

operator divergence (statement of the work of the strain field virtual). The internal forces are expressed then:

Li
int
=Qi

T . i=∫  wi : ui .d  (16)

And the forces of the mechanical loading:

Li
méca
=∫ f i .wi .d∫ ti .w i .d   (17)

Where:
• wi  indicate the field of virtual displacements; 

• f i  indicate the volume forces applying to time t i  to   ; 

• ti indicate the surface forces applying to time t i to the border   of  . 
   
The application of the method of Newton results in solving a linear succession of problems of the type ( n  is the 
number of the iteration of Newton, i  that of the variable of time):

K i
n .u i

n1
=Li

méca , n
−Li

int ,n  (18)

One notes ui
n1
=ui

n1
−ui

n  the displacement increment between two successive iterations of Newton. The 

matrix K i
n  is the tangent stiffness matrix in ui

n  and the vector Li
int ,n  represents the internal forces with n ième  

the  iteration  of  Newton  of  ième  the  step  of  load.  The  quantity  R i
n
=Li

méca ,n
−Li

int , n   represents  the  not 

balanced forces, which one calls the “residue of equilibrium”. The matrix K i
n  is the matrix of the tangent linear 

application of the function R i
n

, it is thus worth:

K i
n
=
∂Ri

n

∂u ∣u in , ti =
∂Li

int , n

∂u ∣
u i

n , ti 

−
∂Li

méca , n

∂u ∣
u i

n , ti 

 (19)

In the absence of follower forces [§2.72.7], the second term is null. It thus remains of the matrix K i
n  only the 

derivative at the point ui
n  of the internal forces compared to displacements:

K i
n
=
∂Li

int , n

∂u ∣
u i

n , ti 

 (20)

a small error in the evaluating of the internal forces can have serious consequences, because it is their exact 
computation which guarantees, if one converges, that it will be towards the sought solution. On the other hand, 
it is not always necessary to use the true tangent matrix, whose computation and factorization are expensive. 
For example, an alternative of the method uses the elastic matrix  K élas . The method using the true tangent 

matrix K i
n  (known as also coherent or consistent matrix) is called the method of Newton; the methods using of 

other matrixes (as for example the elastic matrix K élas ) are called methods of Newton modified or methods of 
quasi-Newton. The choice between a tangent matrix (the last obtained or a preceding matrix) and an elastic 
matrix is carried out in Code_Aster via “ TANGENT” key word MATRICE= or “ELASTIC” MATRICE= of factor 
key word the NEWTON. Moreover, it is possible to use a matrix of discharge, i.e. of a matrix with constant local 
variables (the evolution of nonthe linearities is thus not taken into account in this matrix), below some time step, 
for certain constitutive laws. One will refer to documentation [U4.51.03] for the use of this functionality.
    
The method of Newton with consistent tangent matrix can be illustrated simply using the diagram of [Figure 
2.2.1-a].
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Appear 2.2.1-a

When one takes into account the conditions of displacements imposed by dualisation1Dans1, the system to be 
solved is written:

{Li
int
BT . i=Li

méca

B .ui=ui
d  (21)

One will use the symbol    to note the increments since the preceding equilibrium (in  t i−1 ) of the various 
quantities. One will  use a method of Newton to solve this system. However, the experiment shows that the 
convergence of the method of Newton is strongly dependant on a wise choice of the initial estimate: “more the 
initial estimate is close to the solution, plus the algorithm converges quickly”. To start the iterative process of the 

method,  it  is  thus  useful  to  determine  “a  good”  initial  increment   ui
0 , i

0
 .  For  that,  one  linearizes 

compared to time the continuous problem: it is what is called the phase of  prediction. One connects with the 
loop  of  the  iterations  of  Newton  which  makes  it  possible,  with  convergence,  to  obtain  the  values  of 
 ui , i , and thus those from ui , i  application of the equation (7):

{ui=ui−1ui
 i= i−1 i

 (22)

2.3 Phase of prediction of Eulerian
2.3.1 Linearization

One will thus linearize system 21 compared to time around ui−1 , i−1 . One starts by linearizing the internal 

forces Li
int :

Li
int
≈Li−1

int

∂Lint

∂u ∣ui−1

.u i
0

Lint

 t ∣ti−1

 (23)

the linearization of the reactions of bearing BT . i  is immediate because it is supposed that the matrix B  is 

constant (it does not depend on displacements or time). Like  i= i
0
 i−1 , it comes immediately:

1  the  case  where  the  conditions  of  imposed  displacements  are  treated  by  elimination  (operator 
AFFE_CHAR_CINE), the system to be solved is given by the equation 14. 
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BT . i=B
T . i

0
BT . i−1  (24)

It is supposed that the mechanical loading does not depend on time (the following loads are excluded) and that 
the limiting conditions of Dirichlet are also linear, therefore:

{Li
méca
=Li−1

méca
Li

méca

ui
d
=ui−1

d
 ui

d
 (25)

By reinjecting 23 24 and 25 in the first equation of system 21, one obtains for the balance equation:

Li−1
int

∂Lint

∂u ∣u i−1

. ui
0

Lint

 t ∣ti−1

. t iB
T . i

0
BT . i−1=Li−1

méca
Li

méca  (26)

There is equilibrium at time t i−1 , i.e.:

Li−1
int
BT . i−1=Li−1

méca  (27)

And it thus remains:

∂Lint

∂u ∣u i−1

.ui
0

Lint

 t ∣ti−1

. t iB
T . i

0
=Li

méca  (28)

If one now looks at the second equation of system 21, one obtains for the limiting conditions of Dirichlet:

B .ui−1ui
0
=ui−1

d
ui

d  (29)

There is equilibrium at time t i−1 , i.e.:

B .ui−1=ui−1
d  (30)

It remains finally:

B .ui
0
= ui

d  (31)

One obtains the system of equations allowing to calculate predictive values  ui
0 , i

0
  :

{
∂Lint

∂u ∣ui−1

.u i
0BT . i

0=Li
méca−

Lint

 t ∣ti−1

. ti

B .u i
0
=u i

d

 (32)

2.3.2 tangent Matrix of prediction

the quantity 
∂ L int

∂ u ∣u i−1
 indicates derivative partial at constant time of Li−1

int , it can develop:

K i−1=
∂Lint

∂u ∣u i−1

=Qi−1
T .

∂

∂u ∣ui−1


∂QT

∂u ∣ui−1

. i−1  (33)

the  matrix  K i−1  is  called  tangent  matrix  of  prediction. The  dependence  of  the  matrix  Q  compared  to 

displacements is neglected on the assumption of small displacements: the term  
∂QT

∂ u ∣u i−1
 , known as term of 

geometrical stiffness, thus disappears from 33. This term is taken into account for the great transformations (see 
§1.2.25). For the developers, let us specify that the computation of the tangent matrix at the time of the phase of 
prediction is carried out via computation option RIGI_MECA_TANG.

2.3.3 Second member vector of the command variables
 
a command variable  t   is a scalar quantity, function of time and espace2Pour2, given a priori by the user via 
keyword AFFE_VARC in operator AFFE_MATERIAU. It is a parameter of the problem and not an unknown. The 

2 to be more precise,  a command variable  is  assigned to  a mesh. It  thus is  not  about  a function of  the 
geometry (and thus of displacements), but of the topology of the mesh.
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quantity  
L int

 t ∣t i−1
 indicates  the  partial  differential,  compared  to  t  and with  u  constant,  of 

L int
=Q .  t , t  .  The purpose of this particular notation is drawing attention to the fact that for  nvarc  

command variables, one writes the total differential:



 t
=
∂

∂ t
 ∑

j=1,nvarc



 
j .


j

 t
 (34)

If one takes as example the command variable describing the temperature   :



 t
=
∂

∂ t




.


 t
 (35)

It is supposed that the temperature varies linearly between two times:



 t
=
i
 t i

 (36)

the dependence from   ratio with time and compared to the temperature makes it possible to write:

Lint

 t ∣t i−1

=


 t
Qi−1

T . i−1 =Qi−1
T . ∂∂ t ∣ti−1


∂

∂ ∣t i−1

.
i
 t i   (37)

Because Q  does not depend on time and thus 


t
QT =0 . The vector Li

varc , whose statement is given 

by  38,  is  the increment of loading of temperature (attention to the change of sign!)  which one generalized 
with all the command variables: metallurgical temperature, irradiation, phases (see [R4.04.02]),…

Li
varc
=−

Lint

 t ∣t i−1

. ti=−Qi−1
T . ∂∂ t ∣ti−1

. t i ∑
j=1,nvarc 

∂

∂
j∣
ti−1

.i
j  

(38)

One currently does not take account of the explicit dependence of the stresses compared to time and thus the 
first term of 38 is worth zero. And thus finally:

Li
varc
=−Qi−1

T .  ∑j=1,nvarc 
∂

∂
j∣
ti−1

.i
j  (39)

the increment of loading  of the command variables Li
varc , resulting from derivative of the internal forces 

compared to the command variables is an estimate of the effect of a variation of the command variables. 

In the case of the temperature, if  K  the hydrostatic bulk modulus and    the thermal coefficient of thermal 
expansion are noted, the thermal stress is written: 

 i
ther
=−3.K . .i . I i−1

ther   if i=i−i−1 (40)

Where I  is the matrix identity. And thus, by applying 39:

Li
ther
=−Qi−1

T .
∂

∂∣ti−1
.i=3.K . .i . Qi−1

T . I  (41)

In the elastic case, they are the internal forces associated with a thermal thermal expansion (it is not strictly 
speaking a loading, that is assimilated rather to the effect of an initial strain). This estimate is used in the phase 
of prediction and the stopping criteria. If thermal thermal expansions make leave structure of the elastic domain 
(plasticity for example), this estimate will be corrected during the iterations of Newton.

2.3.4 Second member vector of the mechanical loading
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the mechanical increment of loading Li
méca  is composed of the dead loads (independent of the geometry, like 

gravity) and of the following loads. Actually, there exist cases (the first increment of load, for example) where 

Li−1
méca  is unknown. It is pointed out that the increment of loading (25) is written:

Li
méca
=Li−1

méca
Li

méca  (42)

   
There is equilibrium at time t i−1 , therefore by applying 27:

Li
méca
=Li

méca
−Li−1

int
−BT . i−1  (43)

the statement of the internal forces to time step preceding Li−1
int  implies either to save this vector of preceding 

computation if there exists (taken again of a former computation), or to integrate the constitutive law from the 
initial state given by the user (what can be expensive). By preoccupation of simplicity and an effectiveness, one 
chooses not to reinstate the constitutive law and one expresses simply the internal forces like the nodal forces 
by taking the stresses known at this time, that is to say:

Li−1
int
=Qi−1

T . i−1  (44)

From where the new statement:

Li
méca
=Li

méca
−Qi−1

T . i−1−B
T . i−1  (45)

The computation direct from  44 request with the user to take care of coherence enters the field of the 
stresses, the fields of displacements and local variables (  DEPL ,  SIGM and  VARI in  ETAT_INIT ). with 
respect to the integration of the constitutive law in the case of a resumption of computation. 

2.3.5 Linear system

By reinjecting the statement of 
∂L int

∂ u ∣u i−1
 (equation 33), from 

L int

 t ∣t i−1
  (equation 38) and Li

méca  (equation 45) 

in 32, the system of equations in prediction is written:

{K i−1.ui
0
BT . i

0
=Li

méca
−Qi−1

T . i−1−B
T . i−1Li

varc

B .u i
0
=u i

d  (46)

It will be noticed whereas this statement utilized from now on the Lagrange multipliers at previous time, which 
are sometimes unknown (with the first increment of load, for example). What wants to say that with this new 
statement, one moved the problem of the knowledge of the internal forces at time t i−1 towards the ignorance of 
the Lagrange multipliers at this same time! But one will see that the fact that the limiting conditions are linear us 
“saves”.  Let  us  consider  that  the  solution  of  46  with  regard  to  the  Lagrange  multipliers   i is  written  in 

incremental form:
 i=

 i−1
 i  (47)

This solution solves the first equation of the system:

K i−1.u i
0
BT .  i

0
=Li

méca
−Qi−1

T . i−1−B
T .  i−1Li

varc  (48)

the idea is to search it  i . As the operator BT  is constant, by applying 47, one a:

K i−1 .u i
0
BT .  i=Li

méca
−Qi−1

T . i−1Li
varc  (49)

One supposes that the limiting conditions are checked, therefore:

B .ui
0
= ui

d  (50)

imposed displacements are also written in incremental form:

ui
d
=ui−1

d
ui

d  (51)

the matrix B is constant, we thus had with the preceding increment (the problem was solved):

B .ui−1=ui−1
d  (52)

By means of 51 and 52 in 50 :
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B .ui
0
= ui

d
=u i

d
−u i−1

d
=u i

d
−B .ui−1  (53)

With the equilibrium, one thus has  i who satisfies also the limiting conditions that one rewrites:

B .ui
0
=ui

d
−B .ui−1  (54)

the vector of the Lagrange multipliers  i  can thus be found at the time of the phase of prediction by modifying 

the equation of imposition of the limiting conditions by statement  54. By analogy with the increment of the 
displacements found in prediction ui

0  one will note  i
0
= i :

{K i−1.ui
0
BT . i

0
=Li

méca
−Qi−1

T . i−1Li
varc

B .u i
0
=u i

d
−B .ui−1

 (55)

a cas particulier relates to the use of an excitation of the type  TYPE_CHARGE= “  DIDI ” meaning Dirichlet 
differential, i.e. compared to the initial state. That consists, for the boundary conditions of the blockings type, to 

impose,  not  B .u=ud  ,  but  B .u−udidi =u
d   In  this  case,  the  system to  be  solved  in  the  phase  of 

prediction for the new increment of load is: 

{K i−1.ui
0
BT . i

0
=Li

méca
−Qi−1

T . i−1Li
varc

B .u i
0
=u i

d
−B .ui−1B .udidi

 (56)

2.3.6 Alternatives of the prediction

There exist other options of prediction available in STAT_NON_LINE.

•One  can  use  an  elastic  matrix  K élas  instead  of  the  tangent  matrix  of  velocity  K i−1 ,  it  is  option 
PREDICTION=' ELASTIQUE' (option RIGI_MECA).

•One  can  use  a  secant  matrix  K sécante  instead  of  the  tangent  matrix  of  velocity  K i−1  ,  it  is  option 
PREDICTION=' SECANTE' (option  RIGI_MECA_ELAS ).  The secant matrix is an elastic matrix whose 
Young's modulus is used by applying the damage (see for example [R5.03.18] for more details) 

•One  can  use  a  displacement  increment  previously  calculated  instead  of  the  estimate,  it  is  option 
PREDICTION=' DEPL_CALCULE'. In this case one makes no inversion of system and  ui

0  is directly 

given. Confer to the documentation [U4.51.03] for its use.
•One can use a displacement increment extrapolated compared to the preceding step. One time step calculates 

the estimate of the displacement increment from the total increment obtained like solution with preceding 
(balanced by the ratio of time step). It is option PREDICTION=' EXTRAPOL'.

In these the last two cases, in order to ensure that initial displacement is kinematically admissible, one projects 
the estimate on all  the kinematically admissible fields (i.e satisfying the boundary conditions with Dirichlet) 
according to the norm given by the elastic matrix , which must thus be calculated. Phase 
 

2.4 of correction of Newton Principle

2.4.1 At the conclusion
  

of the phase of prediction, we find ourselves with an estimate of the increment of displacements and  ui
0  

increment of the Lagrange multipliers.  i
0 If this estimate is exact (modulo the application of the convergence 

criteria described to the §2.521 then one obtains the solution converged for time step: t i (57

{ui
convergé

=u i−1ui
0

 i
convergé

= i−1 i
0  )57

if it is not the case, one must find the values of  ui , i  the displacement increments and the Lagrange 

multipliers since the values obtained ui−1 , i−1  with the preceding equilibrium (urgent): t i−1 (58
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{ui
convergé

=u i−1ui
 i

convergé
= i−1 i

 )58

the phase of prediction converged, one thus has crudely: (59

 ui , i=ui
0 , i

0
  )59

    
,  one  takes  as  initial  values  obtained   ui

0 , i
0
  at  the  conclusion  of  the  phase  of  prediction,  before 

correcting by the iterations of  ui
n , i

n
  the method of Newton. With a sufficient number nCV  of iterations of 

Newton (always with the arbitration of the convergence criterion): (60 

{ui
convergé

=u i−1ui
0
∑

j=1

n=nCV

ui
j

 i
convergé

= i−1 i
0
∑

j=1

n=nCV

 i
j

 )60

one did not converge (if the nombre of iterations of Newton is not sufficient), one notes: (61

 ui
n , i

n=ui
0 , i

0∑
j=1

n

ui
j , i

j   )61

total displacement, for time step and i  the iteration of Newton n  will thus be written: (62

ui
n , i

n
=ui−1 , i−1ui

n , i
n
  )62

each iteration, one must solve a system allowing to determine,  ui
n , i

n
 increments of displacements and 

the Lagrange multipliers since result of ui
n−1 , i

n−1
  the preceding iteration: (63

ui
n−1 , i

n−1=ui−1 , i−1 ui
0 , i

0 ∑
j=1

n−1

ui
j , i

j   )63

also notes: (64

 ui
n−1 , i

n−1=u i
0 , i

0 ∑
j=1

n−1

 ui
j , i

j  )64

still: (65

ui
n , i

n
=ui

n−1 , i
n−1
ui

n , i
n
=ui−1 , i−1ui

n−1 , i
n−1
 ui

n , i
n
  )65

2.4.2 One

must linearize system 21 21 the unknowns in with ui
n , i

n
  constant t i  . One starts by linearizing the internal 

forces: Li
int ,n (66

Li
int ,n
≈Li

int ,n−1

∂Lint

∂u ∣u in−1

.ui
n  )66

the linearization of the reactions of bearing is BT . i
n  immediate: (67

BT . i
n
=BT . i

n−1
BT . i

n  )67

is supposed that the mechanical loading does not depend on time (the following loads are excluded) and that 
the limiting conditions of Dirichlet are also linear. Linear

2.4.3 system By
 
reinjecting 66 66 67 67 the first equation of system 21 21 obtains for the balance equation: (68
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Li
int ,n−1


∂Lint

∂u ∣uin−1

.u i
n
BT . i

n−1
BT . i

n
=Li

méca  )68

the quantity 
∂L int

∂ u ∣u in−1  is called coherent tangent matrix and it is noted: K i
n−1  (69 

K i
n−1
=
∂Lint

∂u ∣u in−1

 )69

the limiting conditions, the linearization of system 21 21 us in a way similar to 54 5470

B . ui
n
=ui

d
−B .ui

n−1
 )70

the system to be solved is written finally: (71

{K i
n−1 .ui

n
BT . i

n
=Li

méca
−Li

int ,n−1
−BT . i

n−1

B .ui
n=ui

d−B .ui
n−1  )71

the vector of the internal forces Li
int ,n−1  is calculated starting from the stresses.  i

n−1 Those being calculated 

starting  from displacements  via  ui
n−1  the  behavior  model  of  the  material  [§1.11.1In  fact,  in  the  case  of 

incremental  behaviors  ,   i
n−1  is  calculated  from  and   i−1 , i−1  of  the  increment  of  strain  induced 

 ui
n−1
  by the displacement increment since the beginning of the iterative process (including the phase of 

prediction) or by the gradient of the transformation in the case of F  the great transformations. Alternatives

2.4.4 of the correction Methods

2.4.4.1 of quasi-Newton As

in  the phase of  prediction,  one is  not  obliged to use the true tangent  matrix.  K i
n−1 In  particular,  operator 

STAT_NON_LINE authorizes the use of the elastic matrix, K élas or the reactualization of the tangent matrix 

all time step i0  (key word REAC_INCR ) or all the iterations n0  of Newton (key word REAC_ITER ). Thus, 

the matrix perhaps K i
n−1  replaced by a matrix,  K j

n−1 with, j≤i or a matrix,  K i
m with. m≤n−1 Caution: a 

“stiff” matrix too does not pose problems of stability but can produce a very slow convergence; a “flexible” matrix 
too can lead to divergence, it is advised in this case to make linear search [§3].3It

is difficult to give a rule making it possible to know when one must reactualize the tangent matrix: that strongly 
depends on the degree of nonlinearity of the problem and the size of the increments of load. In

discharge, it is recommended either to use the elastic matrix for the phase of prediction and resolution, or to use 
the elastic matrix for the phase of prediction then the tangent matrix for the resolution. 

The figures hereafter illustrate the various possibilities of reactualization of the tangent matrix: stamp 
•elastic used K élas  with each iteration Figure 2 - 2.4.4.12.4.4.1-a tangent 

•matrix reactualized with K i
n−1  each iteration and each time step,  reactualized 

•tangent matrix all K j
n−1  time step i0  () i0=1  ,  and 

•stamps tangent reactualized all K i
m  the iterations n0  of Newton (here n0=2   ) Figure 2 - 2.4.4.12.4.4.1-d 
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2 - 2.4.4.12.4.4.1-a of the elastic matrix U

 

2 - 2.4.4.12.4.4.1-b of the true tangent matrix revalued with each iteration U
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2 - 2.4.4.12.4.4.1-c of the tangent matrix revalued with each time step Figure

2 - 2.4.4.12.4.4.1-d of the revalued tangent matrix all the 2 iterations of Newton
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the method of Newton modified (using another matrix that the consistent tangent matrix) converges less quickly 
than the method of  Newton classical,  but  is  less expensive.  It  is  all  the more economic as the number of 
degrees of freedom of the system is high. This is why one can advise, when the system is of big size, to keep 
the same tangent matrix during some iterations. Lastly, let us not forget to announce that in certain cases, it is 
computation with the elastic matrix which is fastest in terms of computing time, even if the nombre of iterations 
carried out is much more important (they are cheap iterations since the matrix is calculated and factorized only 
once); moreover, it is the elastic matrix which it is recommended to use during the discharges. It

is necessary to carry out with each iteration of Newton the possible computation of the new tangent matrix and 

K i
n−1  the  “nodal forces”.  Li

int ,n−1
BT . i

n−1 For  the  developers,  let  us  specify  that  these  operations  are 
carried out by computation option FULL _MECA or RAPH _MECA if the tangent matrix is not recomputed. Use

2.4.4.2 of an evolutionary matrix TANGENTE-secant

the method described in this paragraph applies exclusively to the strongly nonlinear problems, where a method 
of Newton classical fails for any type of choice of matrix, for the phase of prediction or correction. Typically, the 
usual  method  of  Newton is  put  at  fault  for  the  problems badly-posed coming from the  use  of  the  lenitive 
constitutive laws (see for example R5.04.02). In

these situations, a NON-convergence appears when the algorithm does not manage to choose between several 
acceptable solutions, in an increment of (pseudonym) - time given. This default of convergence at the total level 
is generally translated at the local level (i.e at the point of integration) by an alternation repeated between a non-
dissipative state (elastic) and a dissipative state (plasticity, damage,…) during consecutive iterations of Newton. 
One of

the strategies consists in using the notion of control (see R5.03.80) to mitigate the insufficiencies of Newton. 
The other strategy consists in modifying the tangent matrix. It is this last strategy which one details here. While 
following

the state of each point of integration of one iteration to the other, one can locate the points responsible for a 
total  NON-convergence.  Once  these  located  points,  one  decides  to  modify  the  matrix  by  hoping  that  this 
modification will allow a total convergence. σ σ

  

2 - 2.4.4.2 2.4.4.2-a constitutive law, use of a mixed matrix TANGENTE-secant the baptized
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approach TANGENTE-secant, activated under keyword COMP_INCR with TANGENTE _SECANTE=' OUI', 
is justified by the following reasoning: if the method of Newton using the coherent tangent matrix does not 
converge, it is often because a certain number (variable) of points of integration changes state (non-dissipative/
dissipative) between two total iterations of Newton. At the local level (see Figure 2 - 2.4.4.2 2.4.4.2-a wants to 
say that one continues to alternate between field 1 () and pic  field 2 (). Because of  pic  the break of 
slope between 1 and 2, the use of a secant or tangent matrix coherent leads to a very poor approximation, from 
where interest to modify it. The choice which one present consists in building the tangent matrix like a linear 
combination  between  the  coherent  tangent  matrix  and  the  secant  matrix,  both  being  determined  by  the 
constitutive laws. Currently, the approach is available only for lenitive constitutive law ENDO_ISOT_BETON . 

To manage the starting of the option TANGENTE-secant, one introduces an additional local variable compared 
to the existing local variables, (with =1 ,n ,n1   the number n  of local variables of the model used). 
This variable represents possible alternation between the elastic state and the lenitive state of a Gauss point. 
One time step initializes it with the first iteration of Newton each again, then one makes it evolve to know, in 
each Gauss point, the number of successive alternations between the two states. By having this information, 
one can estimate that from a certain threshold (for example alternations S0=3  ), the algorithm of Newton will 
not be able to converge any more for the increment of current time and that it is necessary to modify the tangent 
matrix.  To  modify  the  matrix,  one  is  based  directly  on  the  way  in  which  the  coherent  tangent  matrix  in 
ENDO_ISOT_BETON is built (see [R7.01.04]). It is a question of making the sum between the dissipative 
part and the nondissipative part. (72)

K tg=KscK end  where72

is K tg  the tangent matrix, the secant K sc  matrix (left non-dissipative) and the damaging K end  correction (left 

dissipative). For the modified matrix, one K t-s replaces the statement in K tg  (72) by72 (73)

K t - s=Ksc.K end  where73

is   a function of with  n1  values between 0 and 1. The function retained    in the continuation is the 
following one: (74)

=
1

An1−S 0  where74

is A  a constant and the threshold S0  on the value amongst successive alternations undergone from which the 

tangent matrix is modified. For the matrix n1=S 0  remains tangent coherent and for, it n1≫S 0 becomes 

secant. Values considered to be satisfactory for these parameters are and ( A=1,5  values S0=3 by default). 

The choice on the evolution of the value of is paramount  n1  for the performance of the algorithm. One 

chooses an increase in,  n1  for  G=1,0  n1n1G  each new alternation between an elastic state 

and a damaging state, then a reduction in n1  , P when n1n1−P the state remains damaging twice 

continuation. The purpose of the use of is P  to allow the return to the coherent tangent matrix when a Gauss 
point remains damaging on several iterations, since the coherent tangent matrix makes convergence quadratic, 
provided that  one is  close to the solution.  The value of  the rate  of  reduction compared to  P  the rate of 
increase, is G crucial for the behavior of L `evolutionary algorithm. The total idea consists in increasing, lorsqu 
n1 “one is far from the solution to have an operator closer to secant than of tangent coherent, then once 

“near” to the solution, to rock out of coherent tangent matrix (which is the best within the meaning of Newton). 
The ratio (keyword P /G  TAUX_RETOUR – 0.05 per default) represents the third parameter of L” algorithm, 

besides (keyword A  AMPLITUDE ) and (keyword S0  SEUIL ). Method

2.4.4.3 of Newton-Krylov general

Principle the method
of Newton-Krylov is part of the inaccurate methods of Newton. It is only usable when the solver of the linear 
system (71) is71 iterative (in opposition to a direct solver). This approach does not modify the choice of the 
tangent matrix of the system like the preceding methods. She exploits the convergence criterion of the iterative 
solver used for the linearized system. By as well as possible adapting the convergence criterion of the iterative 
method to convergence of Newton, one avoids making useless iterations (in the linear solver) and one gains 
thus in computing times. Put
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in work the general 
principle of the inaccurate methods of Newton is to replace the condition which the increment of solution is 

ui
n , i

n
  the exact solution of the system (71) by71 a weaker condition. It is asked that ui

n , i
n
  the 

condition check: (75)

∥K i
n−1 .ui

n
BT . i

n −Li
méca
−L i

int , n−1
−BT . i

n−1 
B .ui

n−ui
d−B .u i

n−1  ∥n∥Li
méca
−Li

int ,n−1
−BT . i

n−1

u i
d−B .ui

n−1 ∥  where75

n  the sustained pressure term is called. One can

show  that  the  method  suggested  is  convergent  and  that  when  the  continuation  tends  n  towards,  0
convergence is super-linear (see [8] p.9631). The smaller this value is, the more the solution will be close to that 
obtained by an exact resolution, but less one will save time with the resolution of the linear system. It is thus 
necessary to find a good compromise between solving the linear systems quickly and not too much not to 
degrade the convergence of the iterations of Newton. By examining 
the condition (75), onewhere75 notes that it is identical to the relative convergence criterion of the iterative 
solvers used to solve the linearized system of Newton. To check this condition, it is thus a question of using the 
sustained pressure term like convergence criterion of an iterative linear solver. As

one saw previously, it as should be made sure as the continuation tends n  towards 0  preserving the super-

linear convergence of the method of Newton. With this intention, one will control to  n  the decrease of the 
residue of Newton by the law of evolution (cf [8] p .10531): (76)

ηn+1
Res
=γ

∥R i
n∥

2

∥Ri
n−1∥

2  where76

the constant is selected such as. This γ=0.1

simple formula is not sufficient in practice because it is necessary to guarantee an adequate decrease of. For 
n that, one determines completely by n  the following statement: (77)

ηn+1={
η0 n=−1

max(min(0.4ηn ,ηn+1
Res
) ,ηmin) nÜ 0, (1−γ)ηn

2 Ü 0.2

min(0.4ηn , max(ηn+1
Res ,(1−γ)ηn

2
)) nÜ 0, (1−γ)ηn

2
>0.2

 where77

the constant is worth and corresponds 0=0.9  to the convergence criterion used for the first linear resolution. , 
as for
ηmin it, is the value of the convergence criterion of the iterative linear solver provided by the user (key word 

RESI_RELA ). Convergence criteria

2.5 At the end of

the  prediction  and  each  iteration  of  Newton,  one  must  estimate  if  the  iterative  process  converged  (the 
equilibrium of structure is reached). One places oneself at time step running and  t i  the iteration of Newton 

(given that n  the value corresponds n=0  to the prediction). There exist four convergence criteria: Criterion

RESI_GLOB_MAXI consists in checking that the norm infinie3La infinite3 is lower than the value specified 
  by the user. (78)

∥QT . i
n
BT . i

n
−Li

méca
∥∞≤  It78

is not advised to use this criterion alone, because one cannot easily have an idea of the acceptable orders 
of magnitude absolute. Criterion

3 norm corresponds simply to the maximum component of the absolute value of the vector of the residue
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RESI_GLOB_RELA (chosen by default) amounts checking that the residue is sufficiently small, like previously, 
and this compared to a quantity representative of the loading. (79)

∥QT . i
n
BT . i

n
−Li

méca
∥∞

∥Li
méca
Li

varc
−BT . i

n
∥∞
≤  being79

  desired relative accuracy given by the user under keyword RESI_GLOB_RELA (or  the default value 

of). One 10-6 can

notice that,  in  the case of use of RESI_GLOB_RELA  , the criterion can become singular if  the 

external loading becomes  Li
méca
Li

varc
−BT . i

n  null. This can arrive in the event of total discharge of 

structure. If such a case arises (i.e loading time 10 6‑  smaller than the smallest loading observed until this 
increment),  the  code  uses  then  criterion  RESI_GLOB_MAXI  with as value  that  observed  with  the 
convergence of the preceding increment. When the loading becomes again non-zero, one returns to the 
initial criterion. The third

criterion is criterion RESI_REFE_RELA : the idea of this criterion is to build a nodal force of reference, 
which will be used to estimate term in the long term, the nullity (approximate) of the residue: (80)

∀ j∈{ddl } ∣QT . i
n
BT . i

n
−Li

méca  j∣≤ .F j
ref  80

, the nodal force of reference is built  F j
ref  from the data of an amplitude of reference which can A ref  be: A 

stress
•; A pressure
•, a temperature in the case of the THM; A generalized force
•in the case of beams or shells; others…
•the list
is  accessible  in  documentation  from use  of  the  command STAT_NON_LINE  [U4.51.03 ],  description  of 
operand RESI_REFE_RELA . If one takes

as example a stress, the amplitude of reference being given  
ref  by the user via keyword SIGM_REFE  . 

From this amplitude of stress of reference, one defines the tensor: it  is  
test null for all  these components, 

except j-ième which is worth. One defines 
ref then, for each node of each element the nodal force (the goal 

Ri
e  being giving an idea of the importance of a component in a Gauss point of the stress on the nodal force): 

(81) With

Ri
e=

1
N

.∑
=1

N

∑
j=1

M

∣Bi , j
 . j

test∣.  81

the number N  of Gauss points of the element, the number of components M  of the tensor of the stresses; the 

exhibitor being used   to note the evaluating of quantity at the Gauss point. For example are 
  the weights 

of Gauss points. Note:

For certain elements, as the bars, the grids or the membranes, this definition leads to residues of null reference 
on  certain  axes.  To  cure  it,  one  determines  the  nodal  forces  of  reference  via  a  computation  of  order  of 
magnitude based on the size of the element. The nodal

force of reference is then defined by: (82) where

F i
ref
=min

e∈Γ i

Ri
e

 82

i  all the elements connected to the node. The fourth i

criterion is criterion RESI_COMP_RELA  : the idea of this criterion is to separate the various component 
contributions of the residue by components (with the meaning DX, DY,  DZ,  PRE1 , PRE2  , TEMP ). Each 
vector  obtained will  be then normalized by the internal  force corresponding to this residue.  This choice of 
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convergence criterion has meaning only for the strongly evolutionary problems, typically problems THM. Who 
more is, this choice will be effective since one will have problems with strong contrasts. In fact indeed the zones 
with  “strong  gradient” will  control  convergence.  One  définitla  left Fn

c   the  residue  corresponding 

QT . i
n
BT . i

n
−Li

méca to  the  component  and  the  vector  c  L int ,n
c   the  internal  forces  at  time 

corresponding n  to this same component. Criterion c RESI_COMP_RELA then amounts checking that this 
residue is sufficiently small, i.e.: (83)

max
c=1, ,nbcmp 

max
d=1, , nbddl

∣Fn
c ,d ∣

max
d=1, ,nbddl

∣Lint , nc ,d ∣  
convergen

ce83

is issued carried out when all the criteria specified by the user are checked simultaneously. By default, one 
makes a test on the relative total residue (RESI_GLOB_RELA) and the maximum number of iterations of 
Newton (ITER_GLOB_MAXI). Choices of the components

2.5.1 for the convergence criteria For 

residues RESI_GLOB_RELA and RESI_GLOB_MAXI , all the components of the field of displacement are 

used in the evaluating of the norm formulates ∥.∥∞  two cases where a particular processing is made on the 
level of the choice of the components: For 
•the loadings of  the type AFFE_CHAR_CINE  , the degree of freedom concerned is  ignored in  the 
evaluating of the norm of the residue because the procedure of elimination of the unknowns does not make it 
possible to reach the reactions of bearings; For 
•the continuous contact, components LAGR_C and LAGR _F1/  LAGR_F2 are ignored in the evaluating of 
the norm because the model of Signorini-Coulomb is already checked in the algorithm (see [R5.03.52]) and that 
these terms are dimensionally incoherent with those relating to displacements; On the other hand, for the case 
of  the contact  in  XFEM, these components are preserved because they are  used to  check condition LBB; 
Difference 

2.6 of the matrixes in prediction and correction It is important
to stress that the tangent matrix resulting from option RIGI_MECA  _TANG (phase of prediction) and the 
tangent matrix resulting from option FULL_MECA (phase of correction) are in general not identical. Let us 
suppose

that one reached convergence for time and that L t i−1  “one now seeks to obtain L” balances for next time. The 

matrix t i resulting from RIGI_MECA _TANG comes from a linearization from the balance equations compared 

to time around  i.e around  ui−1 , i−1  L “balances with L” urgent. It is thus  t i−1 the tangent matrix of the 

system converged at time  . On the other hand t i−1 , 
the matrix resulting from FULL_MECA comes  from a linearization from the balance equations compared to 

displacement around i.e around ui
n , i

n
  the equilibrium at time. One can interpret t i

the differences between RIGI_MECA_TANG and FULL_MECA in D “other terms. One can thus show that 
the matrix resulting from RIGI_MECA_TANG corresponds to the tangent operator of the continuous problem 
in time , known as also problem of velocity (and connects the velocity of stress at the strainrate), whereas the 
matrix resulting from FULL_MECA corresponds to the tangent operator of the problem discretized in time. The 
document [R5.03.02] gives the statement in each of the two cases for the relation of elastoplasticity of Von 
Mises to isotropic or kinematical hardening linear. It is pointed out that

the processing of a behavior model [R5.03.02 § 5] consists with: And to calculate
•the stresses local variables  i

n  from  i
n  the initial state and of the increment  i−1 , i−1  of strain induced 

by the displacement  increment   ui
n−1
  since the beginning of  the iterative  process (including the 

phase of prediction). To calculate the internal forces

•. To calculate (possibly Li
int ,n
=Qi

T . i
n
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•) the tangent matrix (option RIGI_MECA_TANG for the phase of prediction, option FULL_MECA for the 
iterations of Newton). Case of the following

2.7 loadings a following

loading (in mechanics) is a loading which depends on the geometry of structure, as for example the pressure 
which is exerted in the direction opposed to the norm (or inertia forces in a nonGalilean reference). Thus, when 
the structure becomes deformed with the evolution of the load, the loading, expressed in an absolute coordinate 
system, is transformed. The loads which do not depend on the geometry of structure are called dead or fixed 
loads (for example, gravity). To indicate that a load must be treated like a following load in STAT_NON_LINE, 
one indicates TYPE_CHARGE=' SUIV ” under key word EXCIT. A mechanical  loading comprising of 

Li
méca
ui   the following loads thus breaks up into two parts: (84) the exhibitor

Li
méca
ui =Li

fixe
Li

suiv
ui   84

 
the died  fixe  loads here, and the following loads  suiv  . The system of equations to be solved (21) becomes 
then21: (85) the derivative

{Li
int
BT . i=Li

fixe
Li

suiv
ui 

B .ui=ui
d  85

operations making it possible to write the phase of prediction and the iterations of the method of Newton thus 

utilize the derivatives from ratio with  Li
suiv
ui   displacements. The phase of prediction  ui  becomes: (86) 

And the iterations

{Ki−1−
∂Lsuiv

∂u ∣
u i−1

 .u i0BT . i
0
=Li

fixe
Li−1

suiv
Li

varc

B .u i
0
=u i

d

 86

of Newton consist in solving the system: (87) Thus, at

{K i
n−1−

∂Lsuiv

∂u ∣
u i
n−1 . uinBT . i

n=LfixeLi
suiv , n−1ui−Li

int , n−1−BT . i
n−1

B .ui
n
=ui

d
−B .ui

n−1

 
the 

beginning8
7

of each step of load (prediction) and with each iteration of Newton, one must calculate a stiffness matrix and a 

vector 
∂ Lsuiv

∂u ∣u  related to the following Lsuiv  loadings. The only loads

which  can  be  dealt  as  with  the  following  loads  in  the  actual  position  of  operator  STAT_NON_LINE  are: 
Pressure for
•the modelizations 3D, 3D_SI, D_PLAN , D_PLAN_SI , AXIS , AXIS_SI , C_PLAN , C_PLAN_SI [R3.03 

.04] and COQUE_3D [R3.03 .07]; The loading
•of gravity for elements CABLE_POULIE [ R3.08.05], elements with three nodes comprising a pulley and 

two bits of cables: the force of gravity being exerted on the element depends on the respective lengths of 
the two bits; The centrifugal force

•in  large  displacements,  which  for  a  rotational  speed  is  given  by    :  .  Available for 

∫  .∧[∧OM ] .d =∫  .∧[∧OM0u  ] .d  the  modelizations  3D  and 

AXIS_FOURIER ; The loading
•of  gravity  for  all  modelizations  THM of  the unsaturated porous  environments  [R7.01.10]:  indeed,  the 

density depends on the nodal variables to take account of the behavior models of the géomatériaux one. 
Linear search

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part  
and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version 
default

Titre : Algorithme non linéaire quasi-statique (opérateur [...] Date : 18/04/2013 Page : 25/32
Responsable : Mickael ABBAS Clé : R5.03.01 Révision : 10920

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part  
and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version 
default

Titre : Algorithme non linéaire quasi-statique (opérateur [...] Date : 18/04/2013 Page : 26/32
Responsable : Mickael ABBAS Clé : R5.03.01 Révision : 10920

3 the linear search

here exposed relates to the linear search in L” absence of control. Principle the introduction

3.1

of the linear  search into  operator STAT_NON_LINE  results from a report:  the method of  Newton with 
consistent  matrix does not converge in all  the cases,  in particular when one leaves too much far from the 
solution.  In  addition,  the use of  matrixes  other  than the consistent  tangent  matrix  can,  when they are  too 
“flexible”,  lead to divergence.  The  linear  search  makes  it  possible  to  secure  such  divergences  against.  It 
consists in

considering,  either like   ui
n , i

n
 the increment of  displacements and the Lagrange multipliers,  but as a 

direction of search in which one will seek to minimize a functional calculus (the energy of structure). One will 
find a step of advance in this direction   , and the actualization of the unknowns will consist in making: (88) In 
the absence of

{ui
n
=ui

n−1
+ρ.δui

n

λi
n=λi

n−1+ρ.δλi
n  88

linear search (by default) the scalar is of course   equal to 1. Minimization of 

3.2 a functional calculus In order to
be better convinced of the founded good of the linear search, one can interpret the method of Newton as a 
method of minimization of a functional calculus (if the tangent matrixes are symmetric). We insist on the fact that 
the equations obtained are rigorously those of the method of Newton exposed in [the §2.2] and that only2.2 the 
way of reaching that point is different. “

The  talk the  dualisation of  the  boundary  conditions  of  Dirichlet  and  we  place  Forget”  to  simplify  on  the 
assumption of the small strains. The functional calculus is considered: (89) where the density

J :V ℝ
u J u=∫


 u  .d−∫


f .u .d−∫


t .u .d 

 89

of free energy makes it possible in the case of   to connect the tensor of the stresses to the tensor   of the 

strains linearized by   the relation =
∂

∂
 L” hyperelasticity (one generalizes this situation with the others 

nonlinearities  in  the  continuation  of  the  document).  The  functional  calculus  being convex  J  ,  to  find  the 
minimum of is equivalent J  to cancel its gradient, that is to say: (90) What is

∇ J u .v=0 ∀ v∈V  90

the Principle of the Virtual wors since: (91) Thus, to solve

∇ J u .v=∫ u : v  .d−∫ f . v .d−∫ t .v .d  91

the  equations  resulting  from  the  Principle  of  the  Virtual  wors  (bases  problem  formulated  in  [§1.3])  is 
equivalent1.3 to minimize the functional calculus which represents  J  the energy of the structure (decreased 
internal energy of the work of the external forces and). Method f  of t minimization

3.3 minimization

is made in an iterative way, classically in two times with each iteration: Computation of a direction
•of search along which   one will seek reiterated according to, Computation of the best
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•step of advance in this direction   : In a problem un1
=un .

of minimization, the natural idea is to advance in the direction opposed to the gradient of the functional calculus, 
which is locally the best  direction of  descent since this direction is normal with the lines of  isovaleurs and 
directed in the meaning of the decreasing values 2-3.3-a U - has However 3.3-a

   

- has However 3.3-a

is possible by means of to improve the choice of the direction of descent this method of gradient in a metric 
news. It is what will enable us to find the classical equations of the method of Newton. Let us take the simple 
example of a problem with two variables and for which x  y  the functional calculus has the shape of an ellipse 

whose minimum is in: (92) While choosing  a ,


b   

J  x , y =
1
2

.ax2


1
2

.by2
− x− y  92

like direction of descent the reverse of the gradient of, one passes from one J reiterated to the following (let us 
reason on only) by x  : (93) which does not point

xn1=x n−ax n  93

towards the solution since the norm in a point of an ellipse does not pass in general by the center of the ellipse 
Figure 2 - 

  

 

3.3-b On the other hand 3.3-b 

a change of variables is carried out so that the isovaleurs of become J  circles: (94) Figure 2
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{
x= a. x
y=b . y

J  x , y =
1
2

. x
2
y

2
−


a
.x−



b
. y

 -94

  

- C the use3.3-c

of the opposite direction of the gradient of allows D then J  “to obtain the solution in an iteration: (95) Thus, 

x
n1
=x

n
−xn−  a =



a
⇒ xn1

=


a
 the use95

of the method of gradient in the metric news allows an immediate convergence. In a more complicated case 
(functional calculus convex but different from an ellipse), convergence is not instantaneous but the change of 
variables makes it possible to reduce the nombre of iterations appreciably necessary. Application to

3.4 the minimization of energy to simplify
 
, one will be placed in the discretized linear case where the functional calculus is worth: (96) One J  notes

J u =
1
2

.uT .K .u−uT .L  96

K  of structure, and the vector of L  the imposed loadings. To minimize, we J will use the same method of 
descent  as  previously  by  making  a  completely  similar  change  of  variables  as  a  preliminary.  The  definite 
symmetric matrix K  being positive, its eigenvalues are real positive: one can thus define the “square root” of 
which one will note K  (also symmetric K  ). One poses, the minimization u=K .u of is then equivalent 

J  to that of: (97) By means of

J  u =
1
2

. u
T .u−u

T . K 
−T

.L  97

a decomposition by the diagonal: (98) With diagonal

K=P.D .P−1  98

, therefore D  : (99) What leads
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K=P .D .P−1  99

to: (100) By taking over

KT .K=P .DT .D .P−1
=K  100

  
direction of descent the opposite leadership of the gradient of, one obtains J : (101) That is to say, while

u
n1
=u

n
−un−K−1 .L   

returning1
01

to the initial variables: (102) Or

un1
=un−K−1. K .un−L   102(

103) One finds 

K . un1
−un =L−K .un  103

the equations of the method of Newton: the matrix is Hessienne  K  of the functional calculus (matrix of  J  
derivative second) and the second member is the difference of the loading and the internal forces, also called 
residue of equilibrium. Thus method of Newton perhaps interpreted like resulting from the minimization of the 
energy of structure via a method of gradient applied after a change of metric. Determination 

3.5 of the step of advance Let us return to the real

problem, that of the resolution of. This problem Li
int u i =Li

ext can be interpreted like the minimization of the 

following functional calculus: (104) where corresponds

J=W u i−ui
T .Li

ext  104

to W ui   the discretization, on the basis of the shape functions, the internal energy of structure: (105) One 
calculated

W=∫ u .d  105

by the method of Newton a displacement increment which, in the problem ui
n  of minimization, is interpreted 

like a direction of search, according to what precedes. One will calculate the step of advance in this direction   
allowing to minimize the value of the functional calculus: (106) to find

Min
∈ℝ

{W ui
n−1
.ui

n −Li
ext ui

n−1
 .u i

n }  
106the 

minimum 
of

this function scalar of that one will note   , one seeks  f   the point where its derivative is cancelled (that 
amounts making orthogonal the final residue and the direction of search): (107) is the projection

f ' =[ ui
n ]
T

. [QT . ui
n−1
.ui

n −Li
ext ]=0  107

f '   of the residue on the direction of search. With the notations of [§2.2] and in taking into account2.2 the 
reactions of bearing, the scalar equation to solve determine the step of advance, is written: (  108) At the end 
of

f '  =[ ui
n ]
T

. [QT . ui
n−1
.ui

n BT .  i
n−1
 . i

n −Li
ext ]=0  108

the linear search, one brings up to date displacements and parameters of Lagrange by: (109) the test

{ui
n
=ui

n−1
+ρ.δui

n

λi
n=λi

n−1+ρ.δλi
n  of109
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carries: On the maximum
•number of iterations of linear search indicated by the user under the key - key ITER_LINE_MAXI of factor 

key word the NEWTON (the default  value  0 inhibits the linear search,  and is worth  1 then),    On 
criterion

•RESI_LINE_RELA given by, where is worth by f  ≤ . f 0  default   0.1. The linear search
  
is to some extent a “insurance” making it possible to guard itself against serious divergences of the method 
of Newton. When the direction of search is “bad”  (if the tangent matrix is too flexible, for example), the 
linear algorithm of search ends in a low value of, which avoids  moving away too much from the solution. 
It is not necessary to do many iterations in the method of secant (two or three are enough to avoid the 
catastrophes) because each one is rather expensive (the internal forces should be recomputed) and there 
is not the ambition to find with each iteration of Newton the value of really optimal   . Computation of the 
linear

3.6 coefficient of search There exist two

methods to compute: the optimal one in   the linear search. Secant method

3.6.1 (METHODE=' CORDE') So that the determination

of is not too   expensive, one uses a method of secant of which the maximum number of iterations is fixed by 
the user. The method of secant can be interpreted as a method of Newton where the derivative at the point 
running is approached by the direction uniting the point running and the preceding point: (110) Where one


p1
=

p
−

p
−

p−1

g p
−g p−1 . g p

=

p−1 . g p

−
p . g p−1

g p
−g p−1  110

. One leaves g p= f '  p  and. The method 
0
=0  1=1 of secant has an order of convergence of about 

1.6. It is represented schematically on Figure 2-3.6.1 .1-a mixed 3.6.1-a 

 

.1-a mixed 3.6.1-a

3.6.2 (METHODE=' MIXTE') This method

mixes several techniques of resolution to be more robust. It consists primarily of the application of a secant 
method (see paragraph the preceding one) between two predetermined limits. It is by way of the application the 
method of secant with variable limits. Here the algorithm used: It is supposed that
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1.. If  it  is not  f ' 0 0 the case, one changes the meaning of the direction of descent (by examining the 
negative ones, which   amounts defining as being equal f '  to One seeks − f '

2.positive such as max  . The method f ' max 0 is simply iterative while making with (stage n1=3.n  

of bracketage 0=1  or framing) One thus has
3.the two new limits between which the function changes sign. If it is supposed that the function is continuous, 

f '  there thus exists a solution between these limits. One applies

4.the secant method to this interval: one leaves and. Typical case 
0
=0  1=max

3.6.3 : the method of Newton-Krylov It was specified

higher than the linear search is carried out simultaneously on the unknowns and as the formula u  λ (109) of 
actualization of the variables109 shows it. However the functional calculus to be minimized does not present 
minimum according to the unknowns formulates, it (u ,λ)  about Lagrangian which presents a point saddles, 
i.e. a minimum in formula and u  in formula (see  λ ]). This way make is thus not licit in the general case. 
However, one can
show that if the system in prediction is solved “exactly” (all at least with a numerically satisfactory accuracy), this 
approach is licit. It is generally the case in the usual use of Code_Aster. It is on the other hand not
the case in the frame of the use of the method of Newton-Krylov, where the linear systems are precisely solved 
in a voluntarily inaccurate way. In this situation, to circumvent the problem, only the unknowns formula are 
affected u  by the linear search and the formula of update of the variables thus becomes: formulate (111)

{ui
n
=ui

n−1
+ρ.δui

n

λi
n=λi

n−1+δλi
n  111

the functional calculus to be minimized has well a minimum in formula, procedure  u of linear search is licit. 
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