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Elastoplastic behavior model 
with linear and isotropic kinematic hardening 
nonlinear. Modelizations 3D and plane stresses 

Summarized:

This document describes elastoplastic constitutive law with hardening mixed, kinematical linear and isotropic 
nonlinear.  The equations to  solve  integrate  this  behavior  model  numerically  are  specified,  as well  as the 
coherent tangent matrix.

This behavior is usable for the modelizations of continuums 3D, 2D (AXIS,  C_PLAN,  D_PLAN), and for the 
modelizations DKT, COQUE_3D and PIPE.

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is  
provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version 
default

Titre : Comportement élastoplastique à écrouissage mixte i[...] Date : 04/01/2010 Page : 2/13
Responsable : Jean-Michel PROIX Clé : R5.03.16 Révision : 2535

Contents
1Introduction3                                                                                                                                               ...........................................................................................................................................   

2Description of the modèle4                                                                                                                         .....................................................................................................................   

3Integration of the relation of comportement4                                                                                             .........................................................................................   

4Calcul of the stiffness tangente6                                                                                                                ............................................................................................................   

5Identification of the characteristics of the particular                                                                                   ...............................................................................   

matériau8 6Cas of the plane stresses: computation of p9                                                                           .......................................................................   

7Signification of the variables internes11                                                                                                    ................................................................................................   

8Bibliographie12                                                                                                                                           .......................................................................................................................................   

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is  
provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version 
default

Titre : Comportement élastoplastique à écrouissage mixte i[...] Date : 04/01/2010 Page : 3/13
Responsable : Jean-Michel PROIX Clé : R5.03.16 Révision : 2535

1 Introduction

When the way of loading is not monotonous any more, hardenings isotropic and kinematical are not 
equivalent any more. In particular, one can expect to have simultaneously a kinematical share and an 
isotropic share. If one seeks to precisely describe the effects of a cyclic loading, it is desirable to adopt 
modelizations  sophisticated  (but  easy to  use)  such as the  model  of  Taheri,  for  example,  to  see 
[R5.03.05]. On the other hand, for less complex ways of loading, one can wish to include only one 
linear kinematic hardening, all nonthe linearities of hardening being carried by the isotropic term. That 
makes it possible to follow a curve of tension precisely, while representing nevertheless phenomena 
such as the Bauschinger effect [bib1] (see for example it [Figure 5-a]).

The characteristics of hardening are then given by a curve of tension and a constant, called of Prager, 
for the linear term of kinematic hardening. They are introduced into command DEFI_MATERIAU :

Isotropic hardening linear isotropic Hardening nonlinear
DEFI_MATERIAU 

ECRO_LINE
SY: elastic limit
D_SIGM_EPSI: slope of curve of 

tension
PRAGER: (C: constant of Prager )

DEFI_MATERIAU (
TENSION: (SIGM: curve of tension 
PRAGER: (C: constant of Prager )

These characteristics can also depend on the temperature, on condition that employing then the key 
keys factors  ECMI_LINE_FO and ECMI_TRAC_FO instead of  ECRO_LINE and TENSION. The use of 
these constitutive laws is available in commands STAT_NON_LINE or DYNA_NON_LINE :

Isotropic hardening linear isotropic Hardening nonlinear
STAT_NON_LINE

COMP_INCR:
RELATION: “VMIS_ECMI_LINE”

STAT_NON_LINE
COMP_INCR:

RELATION: 
“VMIS_ECMI_TRAC”

 
In the continuation of  this document, one precisely the model describes combined hardening. One 
presents then the detail  of his numerical integration in restrain with the construction of the coherent 
tangent  matrix.  Lastly,  a  traction  test  uniaxial  pressing  illustrates  the  identification  of  the 
characteristics of the material.
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2 Description of the model

At any moment, the state of the material is described by the strain  , the temperature T , the plastic 

strain 
p  and the cumulated plastic strain p . The equations of state then define according to these 

variables of  state the stress  =H Id   (broken up into hydrostatics parts and deviatoric),  the 

isotropic share of hardening R  and the kinematical share X , so called forced recall:


H =

1
3

tr   = K tr -th avecth= T-T réf  Id éq 2-1

= -H Id=2  - p  où =  -
1
3

tr  Id éq 2-2

R = R  p  éq 2-3

X=C 
p éq 2-4

where K , , ,R  and C  are characteristics of the material which can depend on the temperature.
More precisely, they are respectively the moduli of compressibility and shears, the average thermal 
coefficient of thermal expansion (see [R4.08.01]), the isotropic function of hardening and the constant 
of Prager. As for T réf , it is the reference temperature, for which the thermal strain is null.

K ,  are connected to the Young modulus E  and the Poisson's ratio by:

3K = 32=
E
1 -2

2=
E
1+

 

Note:

Concerning the kinematical share of hardening [éq 2-4], one notes that it is linear in this model. In  
addition, it is necessary to take care of the fact that in certain references, one calls constant of  
Prager 2C /3  and not C  . In the same way, for the isotropic function of hardening, the elastic  

limit is included there by R 0  =
y  , certain references treating it except for. 

The evolution of the local variables 
p  et p  is controlled by a normal flow model associated with a 

plasticity criterion F :

F  , R ,X = −X eq−R  with Aeq= 3
2
A⋅A éq 2-5

̇
p = ̇

∂F
∂

=
3
2
̇

 -X

  -X eq
éq 2-6

ṗ=̇= 2
3
̇

p
⋅̇

p éq 2-7

As for the plastic multiplier ̇ , it is obtained by the condition of following coherence:

{si F <0 ou Ḟ <0 ̇= 0
si F =0 et Ḟ = 0 ̇>= 0

éq 2-8

3 Integration of the behavior model

to carry out the integration of the constitutive law numerically, one carries out a discretization in time 
and one adopts a diagram of  implicit,  famous Eulerian adapted for  elastoplastic  behavior  models. 
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Henceforth,  the  following  notations  will  be  employed:  A− , A  et  A  represent  respectively  the 

values of a quantity A  at the beginning and at the end of time step considered thus that its increment 

during the step.  The problem is then the following:  knowing the state at  time  t−  as well  as the 

increments of strain    and temperature  T , to determine the state at time  t  as well  as the 

stresses  .

Initially,  one compared to the takes into account the variations of the characteristics temperature by 
noticing that:

H =
K

K−
H−

K tr −th  éq 3-1

=



−

−2  −p  éq 3-2

X=
C

C−
X−

C
p

éq 3-3

Within sight of the equation [éq 3-1], one notes that the hydrostatic behavior is purely elastic. Only the 
processing of the deviatoric component is delicate. To reduce the writings to come, one introduces se  

the difference −X  in the absence of increment of plastic strains, so that:

−X=



− 

−−
C
C−
X− + 2 e


se

−2+C  p

éq 3-4

the flow equations [éq 2-6] and [éq 2-7] and the condition of  coherence [éq 2-8] are written once 
discretized and by noticing that p =  :

 p =
3
2
 p

 -X

  -X eq
éq 3-5

F <= 0  p >= 0 F p =0 éq the 3-6

processing of the condition of coherence [éq 3-6] is classical. One starts with test elastic (  p = 0 ) 
which is well the solution if the plasticity criterion is not exceeded, i.e. if:

F = seq
e - R  p−  <= 0 éq 3-7

In the contrary  case, the solution is plastic  (  p >0 )  and the condition of  coherence [éq 3-6]  is 

reduced to  F = 0 .  To solve  it,  one starts by showing that one can bring back oneself  to a scalar 

problem while eliminating  
p . Indeed, by taking account of [éq 3-4] and [éq 3-5], one notes that 


p  is collinear to se  because:

p =
3
2

 p

 −X  eq
[ se -  2+C  p ] éq 3-8

In addition, according to [éq 3-5], the norm of 
p  is worth:

p eq =
3
2
 p éq 3-9

One from of thus deduced immediately the statement from 
p  according to  p  :


p
=

3
2
 p

se

seq
e éq 3-10
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It  now only remains to be replaced  
p  by its statement [éq 3-10] in the equation [éq 3-4] one 

obtains:

  
 -X= se [1 -

3
2

2+C  p

seq
e ]  

while deferring  -X  in the equation F = 0 , one brings back oneself to a scalar equation in  p  to 
solve, namely:

∣seq
e -

3
2

 2+C   p∣- R  p- + p =0 éq 3-11

Insofar as the function  R  is positive,  which one will  admit henceforth, there exists a solution   p  
with this equation, characterized by:

3
2

 2+C  p +R  p− + p = seq
e

where 0 p
2
3

seq
e

2+C
 éq 3-12

Let us note that in the interval  specified in [éq 3-12],  the solution is single.  For details as for the 
solution of this equation, one will refer to [R5.03.02].

The typical case of the plane stresses is studied with [§6].

4 Computation of the tangent stiffness

In order to allow a resolution of the total problem (balance equations) by a method of Newton, it is 
necessary to determine the coherent tangent matrix of the incremental problem. For that, one once 
more adopts the convention of writing of the symmetric tensors of order 2 in the form of vectors with 6 
components. Thus, for a tensor a  :

a = t [ axx a yy a zz  2a xy  2a xz  2a yz ] éq 4-1

If one introduces moreover the hydrostatic vector 1  and the matrix of deviatoric projection P  :

1= t [1 1 1 0 0 0 ] éq 4-2

P= Id -
1
3
1⊗1 éq the 4-3

Then coherent tangent stiffness matrix is written for an elastic behavior:

∂ s
∂

= K 1⊗1+2P éq 4-4

and for a plastic behavior:

∂ s
∂

= K 1⊗1+ 21 -
3 p

seq
e P+92

 p

seq
e -

1

R '  p 3
2

 2+C   
se

seq
e ⊗

se

seq
e  éq the 4-5
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initial tangent matrix,  used by option RIGI_MECA_TANG is obtained by adopting the behavior of the 

preceding step (elastic or plastic,  meant by local  variable  x  being worth 0 or 1) and while taking 

 p = 0  in the equation [éq 4-5].
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Note:

RIGI_MECA_TANG is the operator linearized compared to  time (cf  [R5.03.01],  [R5.03.05]) and 
corresponds to what is called the problem of velocity; in this case, the linearization compared to 

u  , in u = 0  , provides the same statement. 

One now proposes to  show the statement  [éq 4-5].  By differentiating them [éq 2-1]  and [éq 2-2] 
with fixed temperature, one obtains immediately:

= [ K 1⊗1+ 2P ] - 2
p éq 4-6

If the mode of behavior is plastic, the incremental flow model [éq 3-10] provides then:

 p=
3
2
 p

se

seq
e +

3
2
 p se

seq
e  éq 4-7

As for dp, it is obtained by differentiating the implicit equation [éq 3-12]:

[ 3
2

 2+C  + R'  p  ] p = seq
e

éq 4-8

Lastly, it any more but does not remain to provide the variations of se  :

se = 2dseq
e = 3

se

seq
e ⋅  s

e

seq
e  =

1

seq
e  2-3

se

seq
e ⊗

se

seq
e ⋅  éq 4-9

While replacing then [éq 4-7], [éq 4-8] and [éq 4-9] in [éq 4-6], one obtains well the statement [éq 4-5].

This statement is formally identical to that defined in R5.03.02: [éq 4-3] and is written:

∂

∂
= K 1⊗1+ 21 -

3 p

seq
e   Id−1

3
1⊗1 + 92


 p

seq
e -

1

R ' +
3
2

 2+C   
se

seq
e ⊗

se

seq
e   

with = 1  if   led to a plasticization, and = 0  if not.

By means of [éq 3-12], one finds:

∂ s
∂

=
*1⊗1+ 2* Id - 

92

H  p  1-
R ' . p
R  p   1

R'


3
2

 2+C 
 

dev

R  p 
⊗


dev

R  p    

with 
* = K -

2
3

G  p 
H  p 

2* = 2
G  p 
H  p 

for the option FULL_MECA : 
dev= −X  

for the option RIGI_MECA_TANG : dev= −-X−  

with 
H  p = 1

3
2

 2+C  p

R  p 
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and G  p =1
3
2

C 
 p
R  p 

   

5 Identification of the characteristics of the material

Let us consider a traction test uniaxial pressing, [Figure 5-a]. One proposes to show how it  makes it 
possible to identify the constant of Prager and the isotropic function of hardening. In such a test, the 
various tensors are with fixed directions, i.e.:

= X =X
p
=

3
2


pD  with D= [
2 /3

−1 /3
−1 /3 ] éq. 5-1

As long  as the  loading  is  monotonous,  therefore  in  phase of  tension,  one  obtains  the  following 
relations immediately:

p = p X =
3
2

C 
p st =

3
2

C 
p +R  p  éq. 5-2

the constant of Prager is determined by the first plasticization in compression, since one a:

{A
t =

3
2

C A
p + R  A

p 

A
c =

3
2

C A
p - R  A

p 
⇒C =

 A
t +A

c

3A
p éq 5-3

3 2C εA
p

( )σ εt p
σ

ε ε
σp

E
= −

( )σ εc p

σA
t

σA
c

 

Figure 5-a: Traction test uniaxial pressing

the curve of hardening t = F  p   is deduced  from the curve of tension 
t = F    provided by the 

user under key keys ECRO_LINE ((SY and D_SIGM_EPSI (linear hardening)) or TENSION (unspecified 
hardening). It finally makes it possible to obtain the isotropic function of hardening by [éq 5-2]:

R  p  = st  p −3
2

C 
p

.
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For the effective computation of R (p), according to the R5.03.02 document, one titrates party of the 
linearity (ECMI_LINE ) or the linearity per pieces of curve of tension (ECMI_TRAC):

ECMI_LINE : 


t = F  p  = y

E . ET

E - ET

p

R  p  = yE . ET

E - ET

-
3
2

C  p = y + R' . p
éq the 5-4

equation [éq 3-12] becomes then:

3
2

 2+C   p + yR' .  p+ p  = seq
e

éq 5-5

ECMI_TRAC:


t = F  p  =i +

i + 1- s i

p i -1- pi
 p - pi  , pour p i <= p <= pi + 1

R  p  =i +
i + 1- i

p i -1- pi
 p - pi  -

3
2

Cp =i -
i + 1-i

p i -1- pi

p i + R' . p

éq 5-6

Note::

For the use: the correspondence enters the model of behavior VMIS_CINE_LINE and behavior 
VMIS_ECMI_LINE is the following one: 
With VMIS_CINE_LINE , it is necessary to introduce into DEFI_MATERIAU a linear hardening of 
slope And by: 
D_SIGM_EPSI   : And 
For  VMIS_ECMI_LINE ,  to  reproduce  same  behavior  with  linear  kinematic  hardening,  it  is 
necessary to give in DEFI_MATERIAU . 

• a linear hardening of slope ET  : D_SIGM_EPSI   : And 

• the constant of Prager C  : PRAGER   : C 

C  is determined by: C =
2
3

EET

E - ET

 

It should well be noticed that the identification of  C  and of  R  p   have meaning only in one 

restricted field of strains (small strains). In particular, so t  p   present an asymptote max
t  for 


p  sufficiently large, then the kinematical contribution of hardening does not have any more  

meaning. It is thus advised to restrict itself with the field where hardening is strictly positive. 

6 Typical case of the plane stresses: computation of  p

It is necessary to add to the equations [éq 3-1] with [éq 3-4] the constraint plane s33=0 , which adds 
an unknown (corresponding strain):


H
=

K

K−
sH−

K tr  -
th  éq 6-1

=



− 

− +2   - p  éq 6-2
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X=
C

C−
X− +C

p
éq 6-3

33 =0 éq 6-4

Then, the equation [éq 3-4] becomes:

 - X =
m

m- 
- -

C

C - X - + 2mD 
c -2+C 

p +2 e
y = 

e -2+C 
p +2 

y
éq 6-5

 

where  ec is entirely determined by the elastic behavior:

 33
c
=

−

1−
 11

c + 22
c  ,11

c = 11 , 22
c = 22  

and  
y
=[

0 0 0
0 0 0
0 0 Y ]  is unknown. It is also supposed that 13 =23 =13= 23 =0 .

One always has:


p =

3
2
 p

 -X

  -X eq
éq 6-6

F =eq - R  p  <= 0 p³0 F  p = 0 éq 6-7

elastic Test:

• If

F = seq
e
−R  p− <= 0 éq 6-8

then

=se   p = 0 , Y = 0 éq 6-9


H =

K

K - 
H -

+ K tr 
c -

th  éq 6-10

• If not, the solution is plastic:  p > 0  Y ≠0 . One can still bring back oneself to a scalar 

problem in  p .

By taking account  of  [éq 6-5]  and [éq 6-6],  one notes that  −X  is  collinear  to  se + 2 
y  

because:

 −X 1
3
2

2C  p

R p  = −X  H  p = [se
2 

y ] éq 6-11

Thus:

  33−X 33 H  p =[s33
e


4
3
Y ] éq 6-12

We will express the equation [éq 6-12] according to  p  only. According to [éq 6-4]:

33 = 0 = 33 +
H

= 33e
H + K .Y , with e

H =
K

K - 
H -

+ K tr 
c -

th  éq 6-13

By means of [éq 6-5], [éq 6-6] and the incompressibility of plastic strains, one can show that:
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s33
e
e

H

=−
C

C−
X 33

−
éq 6-14

Then:

 33=s33
e
−K.Y

C

C−
X 33

−
éq 6-15

 
As according to [éq 6-3]:

X 33=
C

C−
X 33

−
C .33

p
=

C

C−
X 33

−
C .

3
2
 p

 33−X 33

R  p 
éq 6-16

X 33 .G  p  = C

C - X 33
- +

3
2

C  p
33

R  p 
, with G  p  =1 +

3
2

C
 p
R  p 

éq 6-17

From [éq 6-12], [éq 6-15], [éq 6-17], one obtains an equation flexible  p  and Y  :

Y . 4
3
+ K

H  p 
G  p  =[ s33

e  H  p 
G  p 

-1 ] éq the 6-18

equation [éq 6-11] makes it possible to obtain the scalar equation in  p  to solve, namely:

   -X eq H  p  = R p- + p H  p  = [ se+ 2 
y ]eq éq 6-19

Equation in which Y  is function from  p  the equation [éq 6-18].

As in the case of isotropic hardening, one obtains a scalar equation in  p , always nonlinear, which 
is solved by a method of secant.

Once   p  known,  the  computation  of    and  X is  carried  out  from  the  statement  of  Y , 

therefore of   entirely known, by a approach similar to that of the equation [éq 3-10].

p = 
3
2
 p

se+ 2 
y

 se + 2 
y eq

=
3
2
 p

 -X

H  p   se+2 
y eq

éq 6-20

=



− 

−
2   -

p  éq 6-21

One obtains while eliminating 
p  from [éq 6-6], [éq 6-3] and [éq 6-2]:

= − 
−
2  G  p 

H  p 


3
2

2
 p

R  p H  p 
C
C−
X−

éq 6-22

X=
3
2

C
 p

R  p H  p   − 
−
2 e1−3

2
C

 p
R  p H  p   C

C−
X−

éq 6-23

7 Meaning of the local variables

the local variables of the model to Gauss points (VARI_ELGA) are for all the modelizations:

• VARI_1 = p  : cumulated plastic strain (positive or null)

• VARI_2 =   : being worth 1 if the Gauss point plasticized during the increment or 0 if not. 
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X : tensor of recall:

For the modelization 3D :

• VARI_3 = X 11  

• VARI_4 = X 22  

•  VARI_5 = X 33  

• VARI_6 = X 12  

•  VARI_7 = X 13  

•  VARI_8 = X 23  

For modelizations D_PLAN, C_PLAN, AXIS

• VARI_3 = X 11  

• VARI_4 = X 22  

• VARI_5 = X 33  

• VARI_6 = X 12  

For the modelizations of  shells (DKT,  COQUE_3D),  in  local  coordinate system and in each point  of 
integration of each layer:

• VARI_3 = X 11  

• VARI_4 = X 22  

• VARI_5 = X 33  

• VARI_6 = X 12  
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