
Code_Aster Version 
default

Titre : Méthode IMPLEX Date : 10/01/2012 Page : 1/9
Responsable : Renaud BARGELLINI Clé : R5.03.81 Révision : 8240

Summarized method 
 
IMPLEX:

This document presents a method of resolution of the nonlinear problem, due to Oliver and al. [1],  substituent 
with  the  method  of  Newton  for  certain  constitutive  laws  of  damage  and  plasticity  (ENDO_FRAGILE [3], 
ENDO_ISOT_BETON [4] and VMIS_ISOT_LINE [5] at the present time). It is based on an explicit extrapolation 
of the local variables to determine the degrees of freedom (displacement) from which the behavior is integrated 
implicitly. The nullity of the residue is not checked. It introduces of this fact an approximation of the resolution 
but makes it possible to guarantee the robustness of computation.

It  thus belongs to the user to have  a critical  glance on the got  results,  those being not  converged in  the 
classical  sense  of  the  term   ,  and  potentially  being  able  to  be  far  away  from  the  exact  solution;  one 
consequently advises to carry out several computations with different increments of load to make sure that the 
variation of results obtained is weak.

In  cases  of  brutal  expansion  of  the  damaged  zone  resulting  in  a  fort  snap-back  total  response 
forces/displacement, the method, if  it  makes it  possible to cross instability,  could not be reliable in term of  
result.
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1 Introduction

One presents here a method of resolution, robust but approximate, incremental problem of nonlinear 
quasi-static mechanics, for certain behaviors of damage and plasticity. It is activated by the key word 
METHODE = “IMPLEX” of operator STAT_NON_LINE, and replaces the classical method of NEWTON 
(cf [2]).

2 Position of the problem

One is placed in the general frame of the resolution of a standard problem of nonlinear mechanics 
discretized in space  K∈  and time  t∈[0,T ] , and written in displacement. Its resolution, at 

time t n+ 1 , consists in determining displacements U n +1  (thus strains  U n+1 ), the local variables 

n+ 1  and the forced n+1  checking:
(I)  At the total level, equilibrium of the forces:

                              F ext t n+ 1−F int n +1 U n+ 1 ,t n+ 1   (1) 

(II) At the local level, constitutive equations of the constitutive law considered for the material:
State model: n +1=∑ U n +1 , n+1  

Law of evolution: {
f n+1 , n+10 Convexe de réversibilité

̇ n+ 1=̇n+ 10 Evolution des variables internes

̇n+ 1 f n+ 1 ,n+ 1=0 Condition de Kuhn-Tucker

  (2) 

with  F ext  and  the  F int  external  and  internal  forces,  and  ˙n+ 1  the  multiplier  (of  damage  or 
plasticity). One considers in the continuation a behavior independent of physical time (not of viscosity 
nor of dynamic effect); “pseudo-time” t n+ 1  represents consequently the load factor applied.

In the majority of the cases, each equation (1) and (2) is of relatively easy resolution.

At the total level, the method of Newton leads to a succession of linear problems of the type:

K n +1
i
U n+ 1

i+ 1
=F extt n+ 1−F int n + 1

i
U n+ 1

i
   (3) 

where the high index  represents the iteration of  Newton considered,  U n+1
i+1  is  the displacement 

increment between two successive iterations of Newton and K n+ 1
i  is the total tangent matrix. Let us 

note that this total tangent matrix is written  (cf [2])

                   

K n+ 1 =
∂ F int n+1 U n+ 1

∂U n +1

= A
e =1

p
∫




∇ N e .C en+1
.∇ N e d

 (4)

where  A  is the operator of assembly,  p  the number of elements of the mesh,  C en+1
 the local 

tangent  operator  (resulting  from  the  behavior)  and  the  N e  shape  functions  (for  the  element 

considered,  noted  e ).  The  quantity  F ext t n+ 1−F int n+1
i
U n+ 1

i
  represents  the  residue  of 

equilibrium, which it is necessary in any rigor to cancel. To determine U n+ 1
i+ 1  is thus limited to the 

inversion of the matrix  K n+ 1
i . If thus the local elements resulting from the behavior (forced, tangent 

matrix) are known and fixed, and generate a well K  conditioned matrix, the resolution is easy.
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Moreover  more locally,  if  displacements  U n+1 ,  and consequently the local  strains  U n+ 1 ,  are 
known, the resolution of the majority of the constitutive  laws, i.e. the determination of the stresses 

n+1 , the local variables n+ 1  and the local tangent matrix C en+1
, is relatively easy.

It is thus in the simultaneity of these two models that resides the implicit  difficulty of resolution. The 
most classical method of resolution is the iterative algorithm of Newton (cf [2]). This iterative diagram 
always  does not  converge.  Although  that  remains  prone  to discussion  (there  exist  other  possible 
factors of loss of convergence, such as the output of the basin of attraction of Newton or the presence 
of bifurcations of the solution), the authors allot mainly this loss of robustness to the singular character 
of  the  matrixes,  in  particular  for  the  damage models,  whose local  variables  impact  the  stiffness 
matrixes  of  the  behavior:  in  the  cases of  important  damage,  near  or  reaching  the  fracture,  the 
softening led to tangent matrixes locally very “weak”, which can to the extreme not be definite positive 
more. Through the process of assembly (4), when the damage progresses in structure, the total matrix 
K  is deteriorated: it becomes too much “flexible”, and its minimal eigenvalue tends towards zero. It 

becomes singular then and the algorithm diverges. The robustness of computation is not then assured 
any more.

To increase the robustness of  computation in these situations, Oliver  and al. [1] propose a special 
method of resolution, baptized IMPLEX. The total equilibrium is then checked roughly using a tangent 
matrix  (secant in the case of damage models) local explicitly  extrapolated and assembled, and the 
constitutive laws are solved implicitly starting from the field of approximate displacement. The method 
is presented hereafter.

3 Method IMPLEX

the general  elements of  method IMPLEX are presented here.  For more details,  one can refer in 
particular to [1].

The method suggested is based on two successive stages carried out to determine all the unknowns at 
“pseudo-time” (charges) t n+ 1 .

The first stage consists of  an explicit extrapolation of the local variables, then stresses, according to 
the  quantities  calculated  previously  (with  the  load  t n )  and  step of  load   t n+ 1 .  Thanks to this 
extrapolation,  the  local  tangent  matrix  is  evaluated  and  solidified;  the  resolution  of  the  balance 
equation (3) makes it possible to determine displacements, which one considers right and which are 
thus fixed in their turn.

The second stage consists in carrying out  the implicit  integration of  the behavior,  according to the 
degrees of freedom evaluated at the preceding stage.

The first stage is of explicit type, whereas second is of implicit type, from where the name of IMPLEX. 
At the conclusion of these two stages, the balance equation is not checked (it is it in term of the fields 
extrapolated at the stage (1) only);  however,  more the increment of  load is small,  more the made 
mistake must be weak; one advises of  this fact of  carrying out computations with several  different 
steps of loads in order to check that the difference between the responses obtained is weak (response 
converged in term of step of load). In the continuation, the two stages are described. An assessment 
of the key points is made.

3.1 A method in 2 stages

We here will successively present the 2 fundamental stages of method IMPLEX, synthesized in Table 
1.
 

3.1.1 Extrapolation clarifies and determination of the degrees of freedom
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This first stage relates to in particular the local variable  , whose evolution is governed by a model 
of the type (2).
With the beginning of the step of load t n+ 1 , one has all information resulting from the step from load 

t n  and the former steps of load. It is then possible to write the following developments of Taylor (the 
evolution of the local variable is considered sufficiently regular to be able to do it):

{
n+ 1 = n+ t n+1 ̇nO  t n+ 1

2


n = n -1 + t n̇ n- 1O t n
2


 t n ̇n =  tn ̇n -1 + t n t n ̈n -1 t nO  t n
2
 ⇒ t n̇n= t n̇n -1 +O  t n

2


⇒{̇n =
n

 t n
-O t n

2


n+ 1 = n+
 t n+ 1

 t n
 n− t n+1O  t n

2
O t n+ 1

2


 (5) 

 

with   X i=X i−X i -1 .  By  truncation,  by  neglecting  the  terms  of  order  two,  one  obtains  the  following 

prediction n+ 1  for the variable n+ 1 : 

n+ 1=n
 t n+ 1

 tn
n  (6)

Through (6), it is noted that n+ 1  is well obtained explicitly,  with the load t n+ 1 , according to the quantities 

obtained implicitly with the load t n  . Figure 1 schematizes this process of extrapolation. 

The error  of  extrapolation  can be defined like  the difference between the value  of  the extrapolated local 
variable and its real end value; subject to a sufficiently regular evolution of the local variable to carry out of 
them the developments of Taylor to the sufficient order, one can evaluate this error with: 

 en + 1
=∣n+ 1−n +1∣≈∣̈n∣ t n+ 1

2
 (7) 

This shows that in the case of  sufficiently  regular evolution of  the local  variable,  the error decreases in  a 
quadratic way according to the step of load. 

Once the extrapolated local variable, one  can determine the stress  n+ 1 n+1 ,  n+ 1  and the local tangent 

operator C en + 1
 . 

In the typical case of the isotropic damage models, it is the local secant operator who is used; the extrapolated 
stresses and this operator are written then:

{
 n+ 1n+ 1 ,  n+1 = 1−n+ 1C

elas
:  n+1

C en+ 1
=
∂  n+ 1

∂  n+ 1

= 1−n +1C
elas (8)

 These extrapolated local quantities are used for the assembly of the total tangent matrix K n1  via (4), and to 
the determination of the internal force. 

The balance equation in term of extrapolated field F ext t n+ 1−F int U n +1 ,  n+ 1 , tn+ 1=0  is then solved with 

this extrapolated matrix  and the field of displacement  U n+ 1  obtained. It is solved by a method of Newton-

Raphson classical;  it  is  thus linearized  par.  K n+ 1 U n+1=F extt n+ 1−F int   n+1 ,t n+ 1  In the case of  the 

constitutive  laws  treated  here  (isotropic  damage  with  secant  operator  and  linear  isotropic  plasticity),  the 
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operator of behavior is constant during one time step (i.e. independent of the strain state running n +1 ); the 
process of resolution of Newton-Raphson becomes linear by time step and thus converges in an iteration. This 
stage is  however  iterative  in  certain  cases (nonlinear  plasticity  for  example),  because of  the nonconstant 

character of the tangent operator. With the first iteration, one would take then n+1
0
=n .

At the end of this first stage, the field of displacement U n+1  is regarded as equal to the field obtained by the 

resolution  of  the  balance  equation  written  in  term  of  the  extrapolated  fields:  U n+1= U n+ 1 .  This  field  of 
displacement will not be modified any more thereafter.

 

 Figure 1: Schematization of the method of implicit 

3.1.2 extrapolation Determination of the elements of the constitutive law

Following the first phase, the field of displacement is known. It is fixed for the step of load and will thus not be 
modified.

One determines the strain then n+1U n+1 , then the equations (2) of the constitutive law are implicitly solved 

in order to obtain the stress fields n+1  and of local variable n+ 1 .

This stage is identical to the standard resolution of the equations of the constitutive laws. The only difference is 

the need for storing 
n+ 1

 t n+ 1

 to carry out the extrapolation of the local variable to the following step. 

At the end of this stage, the field of displacement U n+1 and the stress fields n+1  and local variable n+ 1  
are thus known. A major  difference compared to an implicit  classical  computation is the fact  that  the real 
balance equation is not checked; it is it only in term of the extrapolated fields.  

Stage 1: Extrapolation Clarifies Stage 2: Implicit integration 

Extrapolation of the local variables:

n+ 1=n
 t n+ 1

 tn
n  

Fixed displacements:
U̇ n+ 1=0  

Computation of the extrapolated stress:

 n+1n +1 , n+ 1  
Implicit resolution of the constitutive laws:
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State model: n +1=∑ U n +1 , n+1  

Law of evolution: {
f n+1 , n+ 10

̇n+ 1=̇n+ 10

̇n+ 1 f n+ 1 ,n+ 1=0

 

Resolution of  the balance equation in  extrapolated 
fields:

F ext t n+ 1−F int U n+1 ,  n+ 1 , t n+ 1=0  

Output of stage 1: U n+1  Output of stage 2: U n+1  n+1  ,  n+ 1  

Table 1: Summary of automatic method

3.2 IMPLEX Management of time step

introduced method IMPLEX, like all the explicit  methods,  an intrinsic error which must decrease in a quasi-
quadratic way with the step of load. The solution can thus depend slightly on the step of load selected by the 
user.
This  one  can,  if  it  wishes  it,  use  an  automatic  management  of  the  step  of  step  of  load  via command 
DEFI_LIST_INST, by specifying  METHODE= “AUTO” and MODE_CALCUL_TPLUS=' IMPLEX' (cf [9]). This 
method makes it possible to control the error while optimizing the computing time provided the user chose a 
first time step gauged well.
The goal is thus to minimize the error defined by the equation (7). For that one will maximize the increment of 
variable extrapolated by a noted quantity Tol :

 n+ 1=
 t n+ 1

 t n
nTol (9)

From where:

 t n+ 1
Tol . t n
n

(10)

As the increments of local variable depend on the point considered, time step will be selected like the minimal 
value of the statement (10) on the group of structure, that is to say finally:

 t n+ 1=Tol . t nMIN x∈ 1
n  x   (11)

One adds conditions then limiting acceleration and deceleration, as well as limits minimal and maximum for the 
increment of time. The conditions of acceleration  and deceleration are not modifiable and were gauged on 
practical cases, whereas the limits minimal and maximum can be modified by the user (one gives the values 
by default here).

 t n+ 1 tn=1,2 t n
 t n+10.5 t n
 t n+110 t 0
 t n+10.001 t 0

(12)

Thus, the first time step  t 0 , provided by the user, defines the limits of the increment of time. To choose it, 
one advises with the user to have carried out preliminary computations with the method of Newton and to know 
the yield stress of structure; it would seem that the choice of a first time step equal to half of the yield stress 
allows a good effectiveness of the method.
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Let us show whereas the made mistake is well controlled. For that one makes the assumption that equation 9 is 

checked.  One has thus  
 t n+1

 t n
 nTol ,  and if  it  is  considered that  the factors limits  acceleration  and 

deceleration make it possible to write 
 t n+1

 t n
≈1 , it has nTol ; and gradually:

∀ n∈ℕ ,nTol (13)
What finally makes it possible to write:

en + 1
≈∣̈n∣ t n+1

2
Tol2 1+  (14)

the error is thus controlled.

3.3 Key points of the method

After this summary presentation, some remarks are made here to understand the interest of the method and 
also its limitations.

First of all, it is based on an extrapolation of the local variables, determined from development of Taylor. The 
developments of Taylor being valid only for sufficiently regular functions, the method will be it too. Thus, the 
crossing of the yield stress, or the transition of a state of load to discharge, are points for which the method is 
not in any not adapted rigor: the derivative of the damage is null side of the discharge or yield stress, and non-
zero on the side of  the load. However,  if  the steps of load are sufficiently small,  the approximation can be 
made,  insofar  as the  implicit  correction  takes place  and thus that  the  errors  of  extrapolations  are  partly 
gummed.  In  situations  unstable  however,  for  example  when  the  damaged  zone  grows  brutally  (what  is 
characterized in general by an important snap-back of the total response forces/displacement),  the method, 
although robust, cannot guarantee a reliable response, whatever the increment of load used: it is not adapted 
to this kind of situation.

According to the equation (8), in the case of isotropic damage models, because of limitation of   to 1 and the 

symmetric  and definite  nature positive  of  the local  elastic  matrix C elas  ,  the local  secant matrix C en+1
 is 

always symmetric definite positive. So by assembly, the total tangent matrix K n+ 1  remains conditioned well: 

the problems of robustness mentioned in introduction, dependant on the increasingly singular character of K  , 
must thus be eliminated. 

Moreover,  for  a  step of  load given  and the constitutive  laws developed here (ENDO_FRAGILE confer  [3], 
ENDO_ISOT_BETON confer  [4]  and  VMIS_ISOT_LINE confer  [5]),  the  local  tangent  matrix  is  known  by 
extrapolation  clarifies  and  remains  constant  during  all  the  step  of  load.  The  linearization  of  the  balance 
equation (1) by a method of Newton-Raphson leads to a constant total tangent matrix  K n + 1 ; in other words, 
the balance equation becomes linear with each step of load, and its resolution requires only one iteration. 

Then, and to the risk to be redundant, the method leads to external forces and interns not balanced at the end 
of each step of load; they are it only at the end of the first phase, i.e. only in term of extrapolated fields:

{F ext t n+ 1−F int n+ 1U n +1 , t n+1 ≠ 0

F extt n+ 1−F int U n +1 , n+1 ,t n+ 1 = 0
 (15)

Consequently, during computation, one should not require of the algorithm to check the residue except for a 
tolerance, as it is usual to do it (into implicit). From this point of view still, the robustness is guaranteed, since 
the classical criterion of stop is without object.

To finish, this method has the role only to increase the robustness of computation, and not the quality of the 
response obtained. Thus, it introduces an intrinsic error by the means of extrapolation. At best, one can get 
only results almost as good as those obtained by an implicit  classical method of local resolution. This error, 
must decrease in a quasi-quadratic way according to the step of load imposed, subject to a sufficiently regular 
evolution of the local variable (what excludes in fact the unstable propagations of damaged zones).

The use of this method thus requires a certain critical glance. In order to secure strong errors, one recommends 
to carry out computations with increments of loads different and small, in order to check that the solution does 
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not differ too much from one increment to another (in other words, that the solution is close to convergence in 
term of increments of load). Moreover, in the case of crossing of unstable situations, the got results should be 
considered only for their qualitative aspect.

4 Practical aspects of use

This method of  resolution is activated while specifying some, under key word simple  METHODE of  operator 
STAT_NON_LINE, METHODE= “IMPLEX” and by specifying the constitutive law used under COMP_INCR.
Only  certain  constitutive  laws  are  currently  available  with  method  IMPLEX.  Table  2  recapitulates  the 
constitutive laws available according to the type of elements considered.

Surface elements or voluminal Elements of bar

ELAS ELAS

VMIS_ISOT_LINE VMIS_ISOT_LINE

ENDO_ISOT_BETON

ENDO_FRAGILE

TABLEAU 2: constitutive laws available with method IMPLEX

For each constitutive law, the last local variable is modified and corresponding in this case to the ratio 


 t
. 

The method imposes a reactualization of  the matrix  on each increment  (REAC_INCR = 1)  and only  one 
iteration. The residue of equilibrium is calculated, but no criterion is associated for him. One will  be able to 
realize of possible an important error by seeing that the relative residue is high.

For more information on the practical aspects, one will refer to [6] and [7]. Method IMPLEX is illustrated through 
the case test SSNP140 [8].
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