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Law of behavior very-rubber band: almost 
incompressible material

Summary:

One describes here the formulation adopted for a law of behavior very-rubber band of Signorini. This law is a
generalized version of the laws of Mooney-Rivlin often adopted for elastomers. The parameters characterizing
material are defined in DEFI_MATERIAU with the keyword ELAS_HYPER.

This  model  is  selected  in  the  order  STAT_NON_LINE or  DYNA_NON_LINE  via  the  keyword
RELATION =‘ELAS_HYPER’ under the keywords  BEHAVIOR.  This relation extends to great  transformations;
this functionality is selected via the keyword DEFORMATION = ‘GROT_GDEP’. It is available for the elements
3D, 3D_SI, C_PLAN and D_PLAN.
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1 Potential of deformation

1.1 Kinematics

A solid is considered   subjected to great deformations. That is to say F  the tensor of the gradient

of the transformation making pass the initial configuration 0 with the deformed current configuration

 t .  One notes  X  the position  of  a  point  in  0  and  x  the position  of  this  same point  after

deformation in  t . u is then the EPD.lacing enters the two configurations. One thus has:

x=Xu  (1)

The tensor of the gradient of the transformation is written:

F=
∂x
∂X

=I∇ xu  (2)

Figure 1.1-1: Transformation of the initial configuration with finale

 

This tensor is not the best candidate to describe the structural deformation. In particular, it is not worth
zero  for  movements  of  rigid  body  and  it  describes  all  the  transformation:  change  length  of  the
infinitesimal elements but also their orientation. However a rotation movement pure does not generate
constraints and it is thus preferable to use a measurement of the deformations which does not take into
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account this rigid rotation. Let us consider an element infinitesimal length noted  dX  in the initial
configuration and d x  in the final configuration. If the movement is a rigid rotation R , one a:

d x=R . dX  (3)

The standard of this vector after transformation is thus worth

d x .d x=R .d X .R .d X=RT .R .d X .d X  (4)

As the transformation is purely rigid, one a:

RT .R=I  (5)

R is thus an orthogonal tensor. The tensor gradient of deformation can be written like the product of
an orthogonal tensor and a positive definite tensor (polar factorization):

F=R .U  (6)

The tensor U  (called tensor of lengthening) is thus the first measurement of great deformations. On
the other hand, it requires the polar factorization of F , which is expensive operation. One thus prefers
to use the tensor of the deformations of right Cauchy-Green:

C=FT .F=U2  (7)

This tensor is symmetrical. Three invariants of the tensor of Cauchy-Green C  are given by1 : 

I c=tr C  (8)

  

II c=
1
2
.  tr C 

2
−tr C2    (9)

III c=det C   (10)

The last invariant III c  described the change of volume, one can also write it: 

III c=(det F )2= J 2  (11)

1.2 Potential of deformation – case compressible

A model very-rubber band supposes the existence of a potential density of energy internal Ψ , scalar
function of the measurement of the deformations. If an isotropic behavior is considered, the function
  the being must too. It is shown that if the function   depends only on the invariants of the tensor

of the deformations of right Cauchy-Green C , then it describes an isotropic behavior. The potential is
thus a function of these three invariants:

=  I c , II c , III c   (12)

The second  tensor  of  the  constraints  of  Piola-Kirchhoff  is  obtained  by  derivation  of  this  potential
compared to the deformations (see [R5.03.20]):

S=2. ∂Ψ
∂C  (13)

The most general form of a potential is polynomial. She is written according to the invariants of the
tensor of right Cauchy-Green and the parameters materials C pqr  according to Rivlin:

= ∑
 p , q , r =0

∞

C pqr .  I c−3 
p
.  II c−3 

q
.  III c−1 

r
 (14)

with C000=0 . 

There exist particular forms of this potential which are used very frequently, with r=0  :

1 One notes tr C =C11C22C33  the trace of the tensor C .
Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part
and is provided as a convenience.
Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Loi de comportement hyperélastique : matériau pres[...] Date : 25/09/2013 Page : 4/9
Responsable : ABBAS Mickaël Clé : R5.03.19 Révision  :

591ef63acf14

p  q  

1 2 1

C10  C20  C01  

Signorini YES YES YES

Mooney-Rivlin YES NOT YES

Néo-Hookéen YES NOT NOT

1.3 Potential of deformation – case incompressible

1.3.1 Principle

Most materials very-rubber bands (as elastomers) are incompressible, i.e.:

det F=1  (15)

And thus the third invariant III c  is thus worth:

III c=1  (16)

The potential very-rubber band in incompressible mode is thus rewritten:

= ∑
 p , q =0

∞

C pq .  I c−3 
p
.  II c−3 

q
 (17)

Unfortunately,  such  a  writing  leads  to  severe  digital  problems  (except  for  the  case  of  the  plane
constraints). We will thus propose a new writing which makes it possible to solve in a more effective
way the case of the incompressibility and which has in more the good taste to be also valid in mode
compressible, with a wise choice (and easy) of the coefficients.

1.3.2 Tensor of Cauchy-Green modified right

One starts by defining a new tensor of right Cauchy-Green C*  (pure or isochoric deviatoric dilations)
such as:

C*=J
−
2
3 .C  (18)

Indeed, J
1
3 . I  indicate the pure voluminal deformation. This tensor remains symmetrical. Its invariants

are:

I c
*
=J

−
2
3 . I c

 (19)

II c
*=J

−
4
3 . II c

 (20)

III c
*
=1  (21)

Knowing that:

J=C 11.C 22 .C33−C12
2 .C 33−C23

2 .C 112.C12 .C13 .C 23−C13
2 .C 22 

1
2  (22)

With:

I c
*
=
C 11C22C 33

J 2/3
 (23)

And:
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II c
*
=
C 22 .C 33C 11.C 33C11 .C 22

J 4/3
 (24)

These invariants are also called invariants reduced of C .

1.3.3 Potential of deformation modified

If one expresses the potential of deformation using the invariants reduced of C , one can break up the
potential into two parts: 

=
iso


vol  (25)

There is the part 
iso who corresponds to the isochoric deformations ( J=1 ):

 iso= ∑
p ,q=0

∞

C pq . I c
*−3 

p
.  II c

*−3
q

 (26)

And the part 
vol  who corresponds to the voluminal deformations ( J≠1  ): 


vol

=
K
2
.  J−1 

2
 (27)

K  is  the coefficient  of  compressibility. This  formulation makes it  possible  to keep account of  the
effects incompressible and compressible:
1. In the incompressible case, and the framework of a formulation by finite elements the parameter

K  play the part of a coefficient of penalization of the condition of incompressibility;
2. In  the  compressible  case  this  same  coefficient  translates  a  material  property:  hydrostatic

compressibility.
If the model characterizing material is of Mooney-Rivlin type ( p=q=1 ), K  can be given by:

K=
4 C01C10  1 

3 1−2 
 (28)

In the case of small deformations, E=4C01C 101 represent the Young modulus while

G=2(C 01+C10) represent the modulus of rigidity.
 
1.3.4 Tensor of the constraints of Piola-Kirchhoff 2

The  tensor  of  constraints  of  Piola-Kirchhoff  2,  representing  the  stresses  measured  in  the  initial
configuration, is written:

S=2.
∂

∂C
 (29)

Factor 2 makes it possible to find the usual expression in small deformations. One can separate it in
two parts:

S=S isoSvol  (30)

With:

Siso=2.
∂

iso

∂C
 (31)

And:

Svol=2.
∂

vol

∂C
 (32)

Siso  is  the  tensor  of  the  isochoric  constraints  and  Svol  is  that  of  the  voluminal  or  hydrostatic

constraints.
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1.3.5 Lagrangian tensor of elasticity

The elastic  tensor of stiffness (“tangent” matrix for the problem of  Newton) is  given by the double
derivation of the potential:

K=4.
∂
2


∂C .∂C
=4.

∂
2

iso

∂C .∂C
4.

∂
2

vol

∂C .∂C
 (33)
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2 Analytical expressions

2.1 Case of the constraints

We will detail the analytical expression of the constraints of Piola-Kirchhoff for the potential very-rubber
band  of  Signorini  ( p=2  and  q=1 )  in  the  incompressible  case.  There  is  thus  the  tensor  of
constraints of Piola-Kirchhoff 2, representing the stresses measured in the initial configuration which is
written:

S=2.
∂

iso

∂C
2.

∂
vol

∂C
 (34)

With the two potentials:


iso

=C10 .  I c*−3 C01 .  II c*−3C 20 .  I c*−3
2

 


vol

=
K
2
.  J−1 

2
 

(35)

To obtain the constraints, the potential should be derived:

Sij
iso

=2
∂

iso

∂ I c
* .

∂ I c
*

∂Cij
2

∂
iso

∂ II c
* .

∂ II c
*

∂Cij
 

Sij
vol

=2
∂

vol

∂ J
.
∂ J
∂Cij

 

(36)

With:

∂
iso

∂ I c
* =C102.C20 .  I c*−3   

∂
iso

∂ II c
* =C01  

∂
vol

∂ J
=K .  J−1  (37)

As well as the derivative of the reduced invariants (cf. page 26 of [5] for the derivative of the invariants
of a tensor):

∂ I c
*

∂Cij
= III c

−
1
3 . ij−13 .Cij−1 . I c  (38)

∂ II c
*

∂Cij
= III c

−
2
3 . I c .ij−Cij− 23 .Cij−1 . II c  (39)

∂ J
∂Cij

=
1
2
. III c

1
2 .Cij

−1
 (40)

Here thus the analytical expression of the voluminal constraints:

Sij
vol

=K .  J−1  . J .Cij
−1  (41)

And of the isochoric constraints:

Sij
iso=2 C102.C20 .  I c*−3 . J

−
2
3 . ij−13 .Cij−1 . I c C01 . J

−
4
3 .  I c . ij−Cij−23 .Cij−1 . II c  (42)

2.2 Case of the elastic matrix

We will  detail the analytical expression of the elastic matrix for the potential very-rubber band of Signorini (
p=2  and q=1 ) in the incompressible case. One thus has:
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K=4.
∂
2

iso

∂C .∂C
4.

∂
2

vol

∂C .∂C
 (43)

It is thus necessary to derive (twice) the potential:

K ijkl
iso

=
∂
2

iso

∂
2 I c
* .

∂
2 I c

*

∂Cij .∂Ckl


∂
2

iso

∂
2 II c

* .
∂
2 II c

*

∂Cij .∂Ckl
 

K ijkl
vol

=
∂
2

vol

∂
2 J

.
∂
2 J

∂Cij .∂Ckl
 

(44)

Constant the materials are supposed to be constant. One thus has:

∂
2

iso

∂
2 I c
* =2.C20  

∂
2

iso

∂
2 II c

* =0  
∂
2

vol

∂
2 J

=K (45)

It is seen that the coefficient K  is well a coefficient of penalization and that its choice impacts the conditioning
of the matrix. The derivative of the reduced invariants:

∂
2 I c

*

∂Cij .∂Ckl
=III c

−
1
3 .Cki−1.Clj−1 . I c−Cij−1. kl−Ckl−1 .ij13 .Ckl−1.Cij−1. I c  (46)

∂
2 II c

*

∂Cij .∂Ckl
=

−
2
3
. III c

−
2
3 .Ckl

−1.  I c . ij−Cij−23 .Cij−1 . II c
III c

−
2
3 . kl .ij−ik . jl

2
3
.Cki

−1.Clj
−1. II c−

2
3
.Cij

−1.  I c . kl−Ckl 
 (47)

∂
2 J

∂Cij .∂Ckl
=
1
4
. III c

1
4 . Ckl

−1.Cij
−1

−2.Cki
−1.Clj

−1   (48)
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