Operator **MODE_NON_LINE**

1 Goal

The operator **MODE_NON_LINE** allows to calculate a non-linear mode of an autonomous conservative linear system equipped with localised non-linearities of shock.

The initial condition perhaps a linear mode or a non-linear mode allowing to use the results of a former calculation. Non-linearities are defined in the operator.

This operator produces a concept of the type `table_container`. 
Contents

1 Goal......................................................................................................................................................1
2 Syntax..................................................................................................................................................3
3 Operands..............................................................................................................................................5
  3.1 Keyword MATR_MASS and MATR_RIGI.......................................................................................5
  3.2 Keyword ETAT_INIT.....................................................................................................................5
    3.2.1 Operand MODE_LINE............................................................................................................5
    3.2.2 Operand MODE_NON_LINE..................................................................................................5
    3.2.3 Operand NUME_ORDRE........................................................................................................5
    3.2.4 Operand DIR_EVOLUTION...................................................................................................5
    3.2.5 Operand COEF_AMPL...........................................................................................................5
  3.3 Keyword SHOCK...........................................................................................................................5
    3.3.1 Operand GAME.....................................................................................................................6
    3.3.2 Operand RIGI_NOR................................................................................................................6
    3.3.3 Operand PARA_REGUL..........................................................................................................6
    3.4 Operand NODE and GROUP_NO...............................................................................................6
    3.3.5 Operand OBSTACLE..............................................................................................................6
    3.3.6 Operand ORIG_OBST.............................................................................................................6
    3.3.7 Operand NOM_CMP..............................................................................................................6
  3.4 Keyword RESOLUTION...................................................................................................................6
    3.4.1 Operand METHOD..................................................................................................................6
    3.4.2 Operand NB_HARM_LINE......................................................................................................7
    3.4.3 Operand NB_HARM_NONL.....................................................................................................7
    3.4.4 Operand NB_BRANCHE..........................................................................................................7
    3.4.5 Operand NB_PAS_MAN..........................................................................................................7
    3.4.6 Operand NB_ORDRE_MAN....................................................................................................7
    3.4.7 Operand PREC_MAN..............................................................................................................7
    3.4.8 Operand PREC_NEWTON.......................................................................................................7
    3.4.9 Operand ITER_NEWTON_MAXI...............................................................................................7
    3.4.10 Operand CRIT_ORDR_BIFURCATION....................................................................................7
    3.4.11 Operand RESI_RELA_BIFURCATION.....................................................................................8
  3.5 Keyword SOLVEUR........................................................................................................................8
  3.6 Keyword INFORMATION...............................................................................................................8
2 Syntax

resu_out [table_container] = MODE_NON_LINE (  
  ◊ reuse = resu_out,  
  ◆ MATR_MASS = M,                  [matr_asse_depl_r]  
  ◆ MATR_RIGI = K,                  [matr_asse_depl_r]  
  ◆ ETAT_INIT = _F (,  
      ◆ /MODE_LINE = mode_line,       [mode_meca]  
      ◆ /MODE_NON_LINE = resu_in,     [table_container]  
      ◆ NUME_ORDRE = num_ordr,        [I]  
      ◆ DIR EVOLUTION = /-1,          [DEFECT]  
        /1,  
      ◆ COEF_AMPL = ampl,             [R]  
  ),  

# the keyword factor SHOCK is necessary only if the keyword MODE_LINE is present:  
  ◆ SHOCK = _F (  
      ◆ GAME = game,                [R]  
      ◆ RIGI_NOR = alpha,           [R]  
      ◆ PARA_REGUL = 0.005,         [DEFECT]  
        /eta,  
      ◆ /NOEUD = node,              [node]  
      ◆ /GROUP_NO = grno,           [group_no]  
      ◆ OBSTACLE = /'PLAN',         /'BI_PLAN',  
        /'CERLCE',  

# only associated Keywords for OBSTACLE = 'CIRCLE':  
  ◆ ORIG_OBST = (0. , 0. , 0.),      [DEFECT]  
      /(orgx, orgy, orgz)            [l_R]  
  ◆ NOM_CMP = /('DX', 'DY'),        /('DX', 'DZ'),  
      /('DY', 'DZ'),  

# only associated Keywords for OBSTACLE = 'PLAN' or 'BI_PLAN':  
  ◆ NOM_CMP = /'DX',             /'DY',  
      /'DZ',  

◆ RESOLUTION = _F (  
  ◆ METHOD =/'EHMAN',  
# only associated Keywords for 'EHMAN':  
  ◆ NB_HARM_LINE = Hl,             [R]  
  ◆ NB_HARM_NONL = 201,            [DEFECT]  
    /Hnl,  
  ◆ NB_Branche = will nbra,        [I]  
  ◆ NB_PAS_MAN = npas,             [I]  
  ◆ NB_ORDRE_MAN = 20,             [DEFECT]  
    /nordre,  
  ◆ PREC_MAN = 1.0E-9,             [DEFECT]  
    /eps_man,  
  ◆ PREC_NEWTON = 1.0E-8,          [DEFECT]  
    /eps_man,  
  ◆ ITER_NEWTON_MAXI = 15,         [DEFECT]  
    /iter_newt,  
  ◆ CRIT_ORDR_BIFURCATION = 3,     [DEFECT]  
    /crit_bif,
◊ RESI_RELA_BIFURCATION = /1.E-4, [DEFECT]
   /eps_bif, [R]
   ),

◊ INFORMATION = /1, [DEFECT]
   /2, [R]
   )
3 Operands

3.1 Keyword MATR_MASS and MATR_RIGI

♦ MATR_MASS
Real, symmetrical assembled matrix of type \([\text{matr\_asse\_depl\_r}]\).

♦ MATR_RIGI
Real, symmetrical assembled matrix of type \([\text{matr\_asse\_depl\_r}]\).

3.2 Keyword ETAT_INIT

◊ ETAT_INIT
Under this keyword factor, one can inform a periodic solution to initialize the calculation algorithm of the non-linear modes.

3.2.1 Operand MODE_LINE

◊ MODE_LINE
Structure of the type \(\text{mode\_meca}\) exit of a calculation with the operator \text{CALC\_MODES}. This keyword is not valid if the keyword \text{MODE\_NON\_LINE} is present.

3.2.2 Operand MODE_NON_LINE

◊ MODE_NON_LINE
Structure of the type \(\text{table\_container}\) exit of a calculation with the operator \text{MODE\_NON\_LINE}. This keyword is not valid if the keyword \text{MODE\_LINE} is present.

3.2.3 Operand NUME_ORDRE

◊ NUME_ORDRE
If the keyword \text{MODE\_LINE} is present then \text{num\_ordr} indicate the sequence number of the linear clean mode resulting from \text{mode\_line} chosen to initialize the algorithm.
If the keyword \text{MODE\_NON\_LINE} is present then \text{num\_ordr} indicate the sequence number of the periodic solution resulting from \text{resu\_in} chosen to initialize the algorithm.

3.2.4 Operand DIR_EVOLUTION

◊ DIR_EVOLUTION
If 1 then one goes in the same direction as the first calculated tangent vector.
If -1 then one goes in the contrary direction to the first calculated tangent vector.
The value by default is -1.

3.2.5 Operand COEF_AMPL

◊ COEF_AMPL
\text{ampl} is the maximum amplitude given to the periodic solution selected to initialize the algorithm.
This value is useful when one initializes with a linear clean mode, where the maximum amplitude must be small so that the algorithm converges.
The value by default is 1.

3.3 Keyword SHOCK

◊ SHOCK
Under this keyword factor, one informs the physical configuration and parameters corresponding to the non-linearity of shock which one wants to impose.
3.3.1 Operand GAME

◊ GAME

\textit{game} is the distance between the node and the elastic thrust on which this one can return in contact.

3.3.2 Operand RIGI_NOR

◊ RIGI_NOR

\textit{alpha} is the stiffness of the elastic thrust.

3.3.3 Operand PARA_REGUL

◊ PARA_REGUL

\textit{eta} is the parameter allowing to regularize the law of behavior which governs the relation between the node and the elastic thrust.

The value by default is \textit{0,005}.

3.3.4 Operand NODE and GROUP_NO

◊ NODE

\textit{node} is the name of the node on which non-linearity is.

◊ GROUP_NO

\textit{grno} is the name of the group of node on which non-linearity is. It should be noted that \textit{grno} must contain one node.

3.3.5 Operand OBSTACLE

◊ OBSTACLE

Three possibilities:

‘PLAN’ who corresponds to a unilateral elastic thrust.

‘BI_PLAN’ who corresponds to a bilateral elastic thrust.

‘CIRCLE’ who corresponds to an elastic thrust of circular form.

3.3.6 Operand ORIG_OBST

◊ ORIG_OBST

This keyword is available only if \textit{OBSTACLE} = ‘CIRCLE’. It defines the Cartesian coordinates of the center of the circle in the local reference mark whose origin is the node of shock.

3.3.7 Operand NOM_CMP

◊ NOM_CMP

If \textit{OBSTACLE} = ‘PLAN’, or \textit{OBSTACLE} = ‘BI_PLAN’ then this keyword indicates on which axis, ‘DX’, ‘DY’ or ‘DZ’, the thrust is.

If \textit{OBSTACLE} = ‘CIRCLE’, then this keyword indicates in which plan the thrust is.

Oxy plan: (‘DX’, ‘DY’),

Oyz plan: (‘DY’, ‘DZ’),

Oxz plan: (‘DX’, ‘DZ’)

3.4 Keyword RESOLUTION

◊ RESOLUTION

Under this keyword factor, one informs the type of algorithm and the parameters associated. The methods available are to be declared under the operand \textit{METHOD}.

3.4.1 Operand METHOD

◊ METHOD
Choice of the calculation algorithm of the non-linear modes. The only currently available algorithm is ‘EHMAN’ corresponding to the combination of the method of balancing harmonic (HEY) and digital asymptotic method (MAN), as well as an algorithm of Newton. This last makes it possible to make sure of the convergence of the algorithm.

3.4.2 Operand NB_HARM_LINE

NB_HARM_LINE

Hl is the number of harmonics used to develop in the shape of a series of Fourier the variables of displacements.

3.4.3 Operand NB_HARM_NONL

NB_HARM_NONL

Hnl is the number of harmonics used to develop in the shape of a series of Fourier the functions representative of the laws of behavior who govern the relation between the node and the elastic thrust. The following condition $Hnl > Hl$ must be respected.

The value by default is 201.

3.4.4 Operand NB_BRANCHE

NB_BRANCHE

will nbra is the number of branches calculated by the MAN.

3.4.5 Operand NB_PAS_MAN

NB_PAS_MAN

npas is the step of discretization of the branches calculated by the MAN.

3.4.6 Operand NB_ORDRE_MAN

NB_ORDRE_MAN

nordre is the number of discretization of the branches calculated by the MAN.

The value by default is 20.

3.4.7 Operand PREC_MAN

PREC_MAN

eps_man is the tolerance of algorithm MAN.

The value by default is 1.E-9.

3.4.8 Operand PREC_NEWTON

PREC_NEWTON

eps_newt is the tolerance of the algorithm Newton.

The value by default is 1.E-8.

3.4.9 Operand ITER_NEWTON_MAXI

PREC_NEWTON

iter_newt is the iteration count maximum of the algorithm Newton.

The value by default is 15.

3.4.10 Operand CRIT_ORDR_BIFURCATION

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
CRIT_ORDR_BIFURCATION

crit_bif is the number of coefficients of the whole series resulting from the MAN. One carries out the analysis of junction on these points.
The value by default is 3.

3.4.11 Operand RESI_RELA_BIFURCATION

RESI_RELA_BIFURCATION

eps_bif is the tolerance of the criterion which makes it possible to rule on the presence or not of a junction.
The value by default is 1.E-4.

3.5 Keyword SOLVEUR

SOLVEUR

The syntax of this keyword common to several orders is described in the document [U4.50.01].

3.6 Keyword INFORMATION

INFORMATION

Entirety allowing to specify the level of impression in the file MESSAGE.
If INFO=1, one announces only the number of the calculated branch.
If INFO=2, one also displays the relative error of the last point of the branch. As well as the error for each possible iteration of Newton. And finally, the energy and the frequency of the first and the last point of the branch.