Operator DYNA_VIBRA

1 Goal

DYNA_VIBRA is the single operator allowing the launching of all calculations of vibratory dynamics with Code_Aster:

- transients and harmonics
- on physical basis and modal basis

It is an macro-order which calls the historical operators DYNA_TRAN_MODAL, DYNA_LINE_TRAN and DYNA_LINE_HARM according to the choice that the user made on two keywords:

- TYPE_CALCUL, to choose between the transient and the harmonic,
- BASE_CALCUL, to choose between the physical base and the modal base.

The produced concepts are, according to these choices, of type tran_gene, dyna_trans, harm_gene, dyna_harmo and acou_harmo.

This document presents the catalogue of the operator and the two new keywords making it possible to direct the execution towards a historical operator. For description of the keywords and the operands, the reader is directed towards the handbooks of the operators subjacent with the macro-order:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNA_TRAN_MODAL</td>
<td>[u4.53.21]</td>
</tr>
<tr>
<td>DYNA_LINE_TRAN</td>
<td>[u4.53.02]</td>
</tr>
<tr>
<td>DYNA_LINE_HARM</td>
<td>[u4.53.11]</td>
</tr>
</tbody>
</table>
2 Syntax

nom_concept [dyna_vibra_prod] = DYNA_VIBRA {
 ◊ reuse = nom_concept,
 ◊ BASE_CALCUL = (| 'PHYS',
 | 'GENE',
),
 ◊ TYPE_CALCUL = (| 'TRAN',
 | 'HARM',
),
 # Keywords concerning the setting in data if harmonic or transitory calculation on physical basis :
 ◊ MODEL = Mo,
 ◊ CHAM_MATER = chmat,
 ◊ CARA_ELEM = carac,

 ◊ MATR_MASS = my ,
 /
 [matr_asse_gene_R]
 [matr_asse_depl_R]
 [matr_asse_pres_C]

 ◊ MATR_RIGI = laughed ,
 /
 [matr_asse_gene_R]
 [matr_asse_depl_R]
 [matr_asse_pres_C]
 [matr_asse_depl_C]
 [matr_asse_gene_C]

 ◊ MATR_AMOR = amndt ,
 /
 [matr_asse_gene_R]
 [matr_asse_depl_R]
 [matr_asse_pres_C]

 ◊ MATR_IMPE_PHI = imp,
 /
 [matr_asse_DEPL_R]
 [matr_asse_GENE_R]

 # if harmonic calculation with D-returning concept:
 ◊ RESULT = harm,
 /
 [dyna_harmo]
 [harm_gene]

 # introduction of modal damping:
 ◊ AMOR_MODAL = _F {
 / AMOR_REDUIT = l_R
 / LIST_AMOR = l_amor ,
 [lstr8]
 / MODE_MECA = mode ,
 [mode_meca]
 / NB_MODE = nbmode ,
 [I]
 / 9999 ,
 [DEFECT]
 },

 # parameters for harmonic calculation:
 ◊ / FREQ = lf,
 /
 [l_R]
 ◊ / LIST_FREQ = cf,
 /
 [lstr8]
 ◊ / TOUT_CHAM = 'YES',
 /
 [DEFECT]
 ◊ / NOM_CHAM
 | 'DEPL',
 | 'QUICKLY',
 | 'ACCE',

 # parameters of the diagrams of integration
 ◊ SCHEMA_TEMPS = _F {
`DIAGRAM` = (`'NEWMARK'`, [DEFECT]
 | `'EULER'`,
 | `'WILSON'`,
 | `'DEVOGÉ'`,
 | `'ADAPT_ORDRE1'`,
 | `'ADAPT_ORDRE2'`,
 | `'DIFF_CENTRE'`,
 | `'ITMI'`,
 | `'RUNGE_KUTTA_54'`,
 | `'RUNGE_KUTTA_32'`,
),

Keywords only associated with the diagram `NEWMARK`:
 ◊ BETA = /0.25, [DEFECT]
 /beta,
 ◊ GAMMA = /0.5, [DEFECT]
 /gamma,

Keywords only associated with the diagram `ITMI`:
 ◊ BASE_ELAS_FLUI = mix, [melasflu]
 ◊ Digital QUICKLY_FLUI = Nvitf, [I]
 ◊ STATE_STAT = /'NOT', [DEFECT]
 /'YES',
 ◊ PREC_DUREE = /1.E-2, [DEFECT]
 /prec, [R]
 ◊ CHOC_FLUI = /'NOT', [DEFECT]
 /'YES',
 ◊ NB_MODE = Nmode, [I]
 ◊ NB_MODE_FLUI = Nmodef, [I]
 ◊ TS_REG_ETAB = tsimu, [R]

Keyword only associated with the diagram `WILSON`:
 ◊ THETA = /1.4,
 /th,

Keywords only associated with the diagrams `RUNGE_KUTTA_*`:
 ◊ TOLERANCE = /1.E-3, [DEFECT]
 /tol, [R]
 ◊ ALPHA = /1.E-3, [DEFECT]
 /alpha, [R]

 ◊ INCREMENT = _F (_
 / LIST_INST = litps, [listr8]
 / NOT = dt, [R]
 ◊ INST_INIT = Ti, [R]
 ◊ / INST_FIN= tf, [R]
 ◊ / NUME_FIN= nufin, [I]
 ◊ VERI_NOT = / 'YES', [DEFECT]
 / 'NOT',

Operands specific to an integration by step of adaptive times
 ◊ QUICKLY_MIN = / 'NORM', [DEFECT]
 / 'MAXIMUM',
 ◊ COEFF_MULT_NOT = / 1.1 , [DEFECT]
 / cmp , [R]
 ◊ COEFF_DIVI_PAS = / 1.33333334, [DEFECT]
 / cdp , [R]
 ◊ NOT_LIMI_RELA = / 1.E-6, [DEFECT]
 / per, [R]
 ◊ NB_PON PERIOD = 50, [DEFECT]
 / NR, [I]
 ◊ NMAX_ITER_NOT = / 16, [DEFECT]
 / NR, [I]
◊ NOT_MAXIMUM = dtmax, [R]
◊ NOT_MINIS = dtmin, [R]

◊ ETAT_INIT = _F (♦ / =res RESULT,
 . If RESULT
 ◊ /INST_INIT = to, [R]
 /NUME_ORDR = No, [I]
 ◊ / CRITERION = ‘RELATIVE’, [DEFECT]
 ◊ PRECISION = / 1.E-06, [DEFECT]
 / prec, [R]
 / CRITERION = ‘ABSOLUTE’,
 ◊ PRECISION = prec, [R]
 | DEPL = C, [vect_asse_gene]
 | QUICKLY = vo, [cham_no]
 }
 [vect_asse_gene]
 | ACCE = acc, [cham_no]
),

◊ EXCIT = _F (◊ / VECT_ASSE = v, [cham_no]
 / VECT_ASSE_GENE = v, [vect_asse_gene]
 / LOAD = chi, [char_meca]
 ◊ Digital_ORDER = nmordr, [I]
 ◊ / FONC_MULT = F, [function]
 / [tablecloth]
 / [formula]
 ◊ COEFF_MULT = has, [R]
 / FONC_MULT_C = hci, [fonction_C]
 / [formule_C]
 / COEF_MULT_C = aci, [C]
 / ◊ ACCE = ac, [function]
 / [tablecloth]
 / [formula]
 ◊ QUICKLY = VI, [function]
 / [tablecloth]
 / [formula]
 ◊ DEPL = dp, [function]
 / [tablecloth]
 ◊ PHAS_DEG = / 0., [DEFECT]
 / phi, [R]
 ◊ PUIS_PULS = / 0, [DEFECT]
 / nor, [Is]

Operands and keywords specific to the seismic analysis
◊ MULT_SUPPORT = / ‘NOT’, [DEFECT]
 / ‘YES’, [l_R]
◊ DIRECTION = (dx, Dy, dz, drx, dry Martini, drz),
 [l_R]
◊ / NODE = lno, [l_noeud]
 / GROUP_NO = lgrno, [l_groupe_no]
◊ ♦ CORR_STAT = ‘YES’
 ♦ D_FONC_DT = dfdt, [function]
 ♦ D_FONC_DT2 = dfdt2, [function]
),
◊ / MODE_STAT = psi, [mode_meca]
 / MODE_CORR = modcor, [mult_elas, mode_meca]
◊ EXCIT_RESU = _F (
 ◊ RESULT = resuforc,
 ◊ /COEF_MULT = have,
 ◊ /COEF_MULT_C = aci,
 ◊ /COL_S = [R],
 ◊ /COL_C = [C]
),

End of the operands and keywords specific to the seismic analysis

◊ SHOCK = _F (
 ◊ ENTITLE = int,
 ◊ / / NODE_1 = no1,
 ◊ / / GROUP_NO_1 = grno1,
 ◊ / / NODE_2 = no2,
 ◊ / / GROUP_NO_2 = grno2,
 ◊ / / MESH = my,
 ◊ / / GROUP_MA = grma,
 ◊ / / OBSTACLE = obs,
 ◊ / / NORM_OBST = NOR,
 ◊ / / ORIG_OBST = ori,
 ◊ / / GAME = / 1.,
 ◊ / / ENG_VRIL = gamma,
 ◊ / / DIST_1 = dist1,
 ◊ / / DIST_2 = dist2,
 ◊ / / UNDER_STRUCT_1 = ss1,
 ◊ / / UNDER_STRUCT_2 = ss2,
 ◊ / / REFERENCE_MAR = / 'TOTAL',
 ◊ / / nom_sst,
 ◊ / / RIGI_NOR = kn,
 ◊ / / AMOR_NOR = / 0.,
 ◊ / / RIGI_TAN = / 0.,
 ◊ / / AMOR_TAN = / ct,
 ◊ / / FRICTION = / 'NOT',
 ◊ / / 'COULOMB = driven'
Operands specific to the taking into account of a transient speed
for the rotors (number of revolutions variable)
 ◊ VITESSE_VARIABLE = 'NOT',
 ◊ / / 'OUI',
 # if VITESSE_VARIABLE='OUI':
 ◊ VITE_ROTA = vrota,
 ◊ MATR_GYRO = gyro,
 ◊ ACCE_ROTA = arota,
 ◊ MATR_RIGY = gyro,
 # if VITESSE_VARIABLE='NON':
 ◊ VITE_ROTA = / 0.0,
),

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
Keyword specific to the taking into account of a crack in a rotor

◊ Rotor fissure = F (
 ◊ / NOEUD G = noq,
 ◊ / GROUP_NO G = grnog,
 ◊ / NOEUD D = nod,
 ◊ / GROUP_NO D = grnod,
 ◊ ANGL_INIT = 0.0,
 ◊ ANGL_ROTA = 0.0,
 ◊ K_PHI = kphi
 ◊ DK_DPHI = dkdphi
)

◊ VERI_SHOCK = F (
 ◊ STOP_CRITERE = / 'YES',
 ◊ THRESHOLD = / 0.5, S,
)

◊ ANTI_SISM = F (
 ◊ / NODE 1 = no1,
 ◊ / GROUP_NO 1 = grno1,
 ◊ / NODE 2 = no2,
 ◊ / GROUP_NO 2 = grno2,
 ◊ RIGI_K1 = / 0., kN,
 ◊ RIGI_K2 = / 0., kN,
 ◊ THRESHOLD_FX = / 0., Py,
 ◊ C = / 0., C,
 ◊ THEN_ALPHA = / 0., alpha,
 ◊ DX_MAX = / 1., dx,
)

◊ DIS_VISC = F (
 ◊ / NOEUD 1 = no1,
 ◊ /GROUP_NO 1 = grno1,
 ◊ /NOEUD 2 = no2,
 ◊ /GROUP_NO 2 = grno2,
 ◊ K1 = k1,
 ◊ UNSUR_K1 = usk1,
 ◊ K2 = k2,
 ◊ UNSUR_K2 = usk2,
 ◊ K3 = k3,
 ◊ UNSUR_K3 = usk3,
 ◊ C = C,
 ◊ PUIS_ALPHA = /0.5
 ◊ /alpha,
)

◊ BUCKLING = F (
 ◊ ITER_INTE_MAXI =/20
 ◊ RESI_INTE_RELA =/1.0E-06
)
Code_Aster

Titre : Opérateur DYNA_VIBRA
Responsable : ALARCON Albert

Date : 10/07/2015 Page : 7/9
Clé : U4.53.03 Révision : 8dac6d9676af

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

♣ / NODE 1 = no1,
 / GROUP NO 1 = grn01,
♣ / NODE 2 = no2,
 / GROUP NO 2 = grn02,
♣ OBSTACLE = obs,
♣ ORIG OBST = ori,
♣ NORM OBST = NOR,
♣ ENG VRIL = / 0,
 / gamma,
♣ GAME = / 1,
♣ DIST 1 = dist1,
♣ DIST 2 = dist2,
♣ REFERENCE MARK = / 'TOTAL',
[DEFECT] / nom_sst,
♣ RIGI NOR = kN,
♣ FNOR CRIT = film,
♣ FNOR POST_FL = fseuil,
♣ RIGI NOR POST_FL = k2,
)

♣ RELA_EFFO_DEPL = F (♣ NODE = Noah,
 ♣ SOUS STRUC = ss,
 ♣ NOM_CMP = nomcmp,
 ♣ RELATION = F,
)

♣ RELA_EFFO_QUICKLY = F (♣ NODE = Noah,
 ♣ SOUS STRUC = ss,
 ♣ NOM_CMP = nomcmp,
 ♣ RELATION = F,
)

Keywords factors only associated with the coupling with code EDYOS
♣ COUPLAGE_EDYOS = F (♣ VITE ROTA = vrota,
 ♣ PAS TPS_EDYOS = dtedyos,
)

♣ STAGE_EDYOS = F (♣ UNIT = uled,
 ♣ / GROUP NO = grn0ed,
 ♣ NODE = noed,
 ♣ TYPE_EDYOS = / 'PAPANL',
 / 'PAFINL',
 / 'PACONL',
 / 'PAHYNL',
)

End of the keywords factors only associated with the coupling with code EDYOS

Keywords concerning the setting in data if transitory calculation on physical basis
♣ ENERGY = F ()

End of the mots key concerning the setting in data if transitory calculation on physical basis

♣ FILING = F () ♣ / LIST_INST = list [listr8]
 / INST = in [R]
 / PAS_ARCH = ipa [I]
♣ / CRITERION = 'RELATIVE', [DEFECT]
 ♣ PRECISION = / 1.E-06, [DEFECT]
 / prec, [R]
Structure of data produced:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{BASE_CALCUL} = "\text{PHYS}") and (\text{TYPE_CALCUL} = "\text{TRAN}")</td>
<td>dyna_trans</td>
</tr>
<tr>
<td>(\text{BASE_CALCUL} = "\text{PHYS}") and (\text{TYPE_CALCUL} = "\text{HARM}")</td>
<td>dyna_harmo</td>
</tr>
<tr>
<td>(\text{BASE_CALCUL} = "\text{GENE}") and (\text{TYPE_CALCUL} = "\text{HARM}")</td>
<td>harm_gene</td>
</tr>
<tr>
<td>(\text{AsType (MATR_RIGI)} = \text{matr_asse_pres_c})</td>
<td>acou_harmo</td>
</tr>
<tr>
<td>(\text{BASE_CALCUL} = "\text{GENE}") and (\text{TYPE_CALCUL} = "\text{TRAN}")</td>
<td>tran_gene</td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
3 Operands specific to the order DYNA_VIBRA

3.1 TYPE_CALCUL

This keyword which makes it possible to make the choice between transitory calculation (TYPE_CALCUL='TRAN') and harmonic calculation (TYPE_CALCUL='HARM').

3.2 BASE_CALCUL

This keyword makes it possible to make the choice between a calculation on physical basis (BASE_CALCUL='PHYS') and a calculation on modal basis (BASE_CALCUL='GENE').

4 References towards the description of the other keywords and operands

The user who has made the choice TYPE_CALCUL='TRAN' and BASE_CALCUL='PHYS' will find the description of the keywords and operands specific to transitory calculation on physical basis in [U4.53.02], the user’s manual of the operator DYNA_LINE_TRAN.

The user who has made the choice TYPE_CALCUL='TRAN' and BASE_CALCUL='GENE' will find the description of the keywords and operands specific to transitory calculation on modal basis in [U4.53.21], the user's manual of the operator DYNA_TRAN_MODAL.

The user who has made the choice TYPE_CALCUL='HARM' and BASE_CALCUL='GENE' or 'PHYS' will find the description of the keywords and operands specific to harmonic calculation in [U4.53.11], the user’s manual of the operator DYNA_LINE_HARM.