Operator POST_RELEVE_T

1 Goal

To extract from the values of components of fields of sizes and to carry out calculations of moye born and from invariants. The values are recorded on nodes, meshes, broken lines connecting of the nodes or on beforehand definite loci like concepts of the type curve (INTE_MAIL_2D $[\text{U4.81.11}]$) or surface (INTE_MAIL_3D $[\text{U4.81.12}]$). They can be the subject, by this same procedure:

- calculations of:
 - averages,
 - resultants and moments of vector fields,
 - invariants of tensorial fields,
 - directional trace of fields,
 - extrema and arithmetic mean on nodes or meshes
- of expression in the reference marks TOTAL, ROOM, POLAR, USER or CYLINDRICAL.

POST_RELEVE_T product a concept of the type table, which can be printed using IMPR_TABLE $[\text{U4.91.03}]$.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
2 General syntax

tresu [tabl_sdaster] = POST_RELEVE_T(

 ♦ ACTION = _F (
 ♦ ENTITLE = name, [K8]
 ♦ OPERATION = | 'EXTRACTION', [K16]
 | 'AVERAGE',
 | 'EXTREMA',
 | 'MOYENNE_ARITH',

 ♦ / case OPERATION = 'EXTRACTION' or 'AVERAGE':

 / WAY = / curve, [curve]
 / surface, [surface]
 / ♦ | NODE = lnoe, [l_noeud]
 | GROUP_NO = lgrno, [l_gr_noeud]
 ♦ / ALL = 'YES',
 / | MESH = lmail, [l_maille]
 | GROUP_MA = lgrma, [l_gr_maille]

 ♦ / case OPERATION = 'EXTREMA' or 'MOYENNE_ARITH':

 | ALL = 'YES',
 | NODE = lnoe, [l_noeud]
 | GROUP_NO = lgrno, [l_gr_noeud]
 | MESH = lmail, [l_maille]
 | GROUP_MA = lgrma, [l_gr_maille]

 ♦ FORMAT_C = / 'MODULE', [DEFECT]
 / 'REAL',
 / 'IMAG',
 ♦ / CHAM_GD = chpgd, / [cham_no_sdaster]
 / [cham_elem]

 / RESULT = resu, / [evol_elas]
 / [evol_ther]
 / [evol_noli]
 / [mode_flamb]
 / [dyna_trans]
 / [dyna_harmo]
 / [mode_meca]
 / [mode_stat]
 / [fourier_elas]
 / [fourier_ther]
 / [mult_elas]
 / [mode_acou]
 / [accu_harmo]
 / [base_modale]

 ♦ NOM_CHAM = chpsymbo, [K16]
 ♦ / TOUT_ORDRE = 'YES',
 / NUME_ORDRE = lordre, [l_I]
 / LIST_ORDRE = lenti, [listis]
 / NUME_MODE = lmode, [l_I]
 / LIST_MODE = lenti, [listis]

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
/**
 * NOM_CAS = nomcas,
 * NOEUD_CMP = noeucmp,
 * FREQ = lfreq,
 * LIST_FREQ = lreel,
 * INST = linst,
 * LIST_INST = lreel,
 * PRECISION= prec,
 * RELATIVE CRITERE=/
 * TOUT_CMP = 'YES',
 * NOM_CMP = lcmp,
 * REFERENCE MARK = / 'TOTAL',
 * VEC_Y = (oy1, oy2, oy3),
 * ANGL_NAUT = (has, B, c),
 * ORIGIN = (X, there, Z),
 * AXE_Z = (oz1, oz2, oz3),
 * TRAC_NOR = 'YES',
 * TRAC_DIR = 'YES',
 * DIRECTION = (X, there, [Z]),
 * INARIANT = 'YES',
 * ELEM_PRINCIPAUX = 'YES',
 * RESULTANT = lcmp,
 * MOMENT = lcmp,
 * NOT = (X, there, [Z]),
 * MOYE_NOEUD = / 'YES',
 * TITLE = title
 */
3 Principles of use of POST_RELEVE_T : operand ACTION

The postprocessing carried out by POST_RELEVE_T require the data of three information:

- place,
- object,
- nature.

Each occurrence of the keyword factor ACTION this triplet defines.

place postprocessing indicates a geometrical figure connecting the points of post - treatment. This place is defined by means of the keywords:

- WAY
- NODE
- GROUP_NO

object postprocessing is defined by the choice of a field of size, components and possibly of associated quantities chosen by various keywords.

The fields of size are chosen by one of the keywords:

- RESULT
- CHAM_GD

field of size produced by an operator elementary, or extracted from a concept result by CREA_FIELD [U4.72.04].

components by:

- TOUT_CMP
- NOM_CMP

and quantities associated by:

- INVARIANT
- ELEM_PRINCIPAUX
- TRAC_NOR
- TRAC_DIR and DIRECTION
- RESULTANT and, optionally, MOMENT and NOT

nature postprocessing corresponds to the operations: keyword **OPERATION**

- of extraction of values: 'EXTRACTION'
- of calculation of averages (with the direction integration), of minimum and maximum on a way or an ordered group of nodes: 'AVERAGE'
- of calculation of minimum and maximum on groups or entities: 'EXTREMA'
- of calculation of averages to the arithmetic direction on groups or entities: 'MOYENNE_ARITH'
4 Choice of the place of postprocessing

4.1 OPERATION = 'EXTRACTION' or 'AVERAGE'

4.1.1 Syntax

♦ / WAY = / curve, [curve]
 / surface, [surface]
 / | NODE = lnoe, [l_noeud]
 | GROUP_NO = lgrno, [l_gr_noeud]
◊ / ALL = 'YES',
 / | MESH = lmail, [l_maille]
 | GROUP_MA = lgrma, [l_gr_maille]

4.1.2 Operands WAY / NODE / GROUP_NO/ALL/MESH/GROUP_MA

• The argument of WAY is a concept produced by one of the following operators:
 INTE_MAIL_2D [U4.81.11]
 The concept is reduced then is with the intersection of segment of right-hand side and/or arc of a circle with the meshes 2D of the grid Ω, that is to say with a set of ways built on meshes 1D of the grid of Ω.
 INTE_MAIL_3D [U4.81.12]
 The concept is reduced then to the intersection of segments of right-hand side with the meshes 3D of the grid of Ω.
 The place obtained in this case is always included in Ω.

• The argument of NODE is a list of nodes while that of GROUP_NO is a list of groups of nodes. The nodes are treated in the order provided by the user. To reorder the nodes of a list, the order should be used DÉF_GROUP/OPTION = 'NOEUD_ORDO' [U4.22.01]

• Keywords MESH and GROUP_MA allow to limit postprocessing to a list of meshes ou/et a list of groups of meshes.
 ALL = 'YES' returns to the standard case (one considers all the meshes). These keywords are not usable qu' with NODE and/or GROUP_NO.

Note:
It is disadvised using GROUP_MA or MESH with the operation AVERAGE except if the elements are segments. Let us recall that the operation AVERAGE calculate sizes according to a length L. For fuller information, it is necessary to refer in the paragraph dedicated to the keyword OPERATION where the quantities calculated using this option are presented. The keyword TOUT=' OUI' wants to say "all the meshes of the grid" the directly affected nodal elements on the nodes of the grid (AFFE_MODELE/NODE), in addition advised, are ignored postprocessing.

4.1.3 Concepts of points of postprocessing and examples

The points of postprocessing are the points of Ω where the components (or quantities derived) are evaluated. The operation of extraction carries out this evaluation. The points of postprocessing can be classified according to two families:

• Nodes:
 Case where the place of postprocessing is defined is by means of the keywords NODE and/or GROUP_NO, that is to say by means of the keyword WAY with a concept of the type curve obtained like lists of mesh 1D.

• Geometrical points:
Case where the place of postprocessing is defined by means of the keyword `WAY` with a concept of the type `curve` or `surface` obtained like meeting of segments of right-hand side and/or arcs of a circle.
4.1.4 Example of curves and parts of curve of one WAY

The way represented on this figure consists of two curves: the first curve corresponds to the segment of right-hand side $[AD]$ and the second with the arc of a circle of center O who connects the point M_1 at the point M_8. The curve corresponding to the arc connecting M_1 and M_8 breaks up into four parts: arcs connecting respectively M_1 with M_2, M_3 with M_4, M_5 with M_6, M_7 with M_8, other ends of arc being external with the field.

The curve corresponding to the segment $[AB]$ breaks up into two parts: the segment $[AB]$ and the segment $[CD]$ because $[BC]$ is external with the field Ω.

4.1.5 Example of points of postprocessing corresponding to one WAY

![Diagram](image-url)
On this figure two ways are visualized.
Way n°1: the segment $[AB]$

- The points of postprocessing are reduced to $[A, M_1, M_2, M_3, M_4, B]$.
- The point M_i is located by the curvilinear X-coordinate $(M_i) = \|AM_i\|$.

In the case of an arc of a circle the curvilinear X-coordinate is defined by $s = R\alpha$ where R is the ray and α is the angle corresponding to the point in question.

Way n°2: meeting of two ways (two parts)

- The points of postprocessing are reduced to $[N_1, N_2, N_3, N_4]$ and $[N_5, N_6, N_7, N_8, N_9, N_{10}]$.
- The curvilinear X-coordinate locating N_i on the way of points of postprocessing $[N_j, \ldots N_p]$ is defined by the relations:

$$
\begin{align*}
 s(N_1) &= 0 \\
 s(N_i) &= \sum_{j=1}^{i-1} \|N_jN_{j+1}\| \quad \text{for} \; i = 2, \ldots, p
\end{align*}
$$

4.1.6 Example of points of postprocessing specified by the keywords **NODE** or **GROUP_NO**

![Figure 4.3.3-a](image)

This figure visualize a place of postprocessing built starting from a list of nodes.

The points of postprocessing are the nodes represented, the place of postprocessing is the broken line connecting them according to the order provided by the user, which makes it possible to define a curvilinear X-coordinate by means of the relations presented for the ways seen previously. The value extracted on these ways is interpolated linearly between the values recorded on the nodes. Thus it should be noticed that if the operation of postprocessing is a calculation of average, all occurs like if the segment $[N_{47}N_{61}]$ was contained entire in formula Ω.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
In this case, the curvilinear X-coordinate is calculated starting from the way defined by the course of the nodes, such as defined in the list of nodes.
4.2 OPERATION = ‘EXTREMA’ or ‘MOYENNE_ARITH’

4.2.1 Syntax

\[\begin{align*}
\text{\textbullet} & \quad \text{ALL} = \text{\textquotesingle}YES\text{\textquotesingle}, \\
\text{\textbullet} & \quad \text{NODE} = \text{lnoe}, [l_noeud] \\
\text{\textbullet} & \quad \text{GROUP_NO} = \text{lgrno}, [l_gr_noeud] \\
\text{\textbullet} & \quad \text{MESH} = \text{lmail}, [l_maille] \\
\text{\textbullet} & \quad \text{GROUP_MA} = \text{lgrma}, [l_gr_maille]
\end{align*}\]

4.2.2 Operands \texttt{ALL} / \texttt{NODE} / \texttt{GROUP_NO/MESH/GROUP_MA}

- The argument of \texttt{NODE} is a list of nodes while that of \texttt{GROUP_NO} is a list of groups of nodes. The nodes are not ordered.
- Keywords \texttt{MESH} and \texttt{GROUP_MA} allow to limit postprocessing to a list of meshes ou/et a list of groups of meshes.
- \texttt{ALL = \textquotesingle YES\textquotesingle} returns to the standard case (one considers all the meshes).
5 Object-choice of postprocessing

These keywords make it possible to define the object of postprocessing. They indicate:

- a field of size: keywords `CHAM_GD`, `RESULT` (and its associated keywords),
- a quantity associated with the components with the field: keywords `TOUT_CMP`, `NOM_CMP`, `INVARIANT`, `ELEM_PRINCIPAUX`, `TRAC_NOR`, `TRAC_DIR`, `DIRECTION`, `REFERENCE MARK`, `NAP`, `RESULTANT`, `MOMENT`, `NOT`.

5.1 Field of size

5.1.1 Syntax

| / CHAM_GD = chpgd, |
| / RESULT = resu, |
| ♦ / NOM_CHAM = chpsymbo, |
| ♦ / TOUT_ORDRE = 'YES', |
| ♦ / NUME_ORDRE = lordre, |
| ♦ / LIST_ORDRE = lenti, |
| ♦ / NUME_MODE = lmode, |
| ♦ / LIST_MODE = lenti, |
| ♦ / NOM_CAS = nomcas, |
| ♦ / FREQ = lfreq, |
| ♦ / LIST_FREQ = lreel, |
| ♦ / INST = linst, |
| ♦ / LIST_INST = lreel, |
| ♦ / PRECISION = prec, |
| ♦ / CRITERION = 'RELATIVE', |
| ♦ / FORMAT_C = 'MODULE', |

5.1.2 Operand `CHAM_GD`

The argument of `CHAM_GD` is the name of a concept of the type `cham_no_*` or `cham_elem_*`.

5.1.3 Operands `RESULT` / `NOM_CHAM` / `TOUT_ORDRE` / `NUME_ORDRE` / `LIST_ORDRE` / `NUME_MODE` / `LIST_MODE` / `NOM_CAS` / `FREQ` / `LIST_FREQ` / `INST` / `LIST_INST` / `PRECISION` / `CRITERION`

See [U4.71.00].

5.1.4Operand `FORMAT_C`

In the case of the complex fields, one can extract:

| / 'MODULE' the module |
| / 'REAL' the real part |
| / 'IMAG' the imaginary part |

5.2 Components of the field and derived quantities

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
For the vectors and the tensors of order 2, it is possible to ask the evaluation of the components in a reference mark and to derive from the quantities obtained by contracted product. Keywords `REFERENCE MARK`, `TRAC_NOR`, `TRAC_DIR` and `DIRECTION` allow to define these quantities.

5.2.1 Syntax

```plaintext
♦ / TOUT_CMP = 'YES',
   ♦ / NOM_CMP = lcmp, [l_K8]
   ♦ / REFERENCE MARK = / 'TOTAL', [DEFECT]
     / 'POLAR',
     / 'LOCAL',
     ♦ VECT_Y = (oy1, oy2, oy3), [l_R]
     / 'USER',
     ♦ ANGL_NAUT = (has, B, c), [l_R]
     / 'CYLINDRICAL',
     ♦ ORIGIN = (X, there, Z), [l_R]
     ♦ AXE_Z = (oz1, oz2, oz3), [l_R]
   ♦ / TRAC_NOR = 'YES',
   / TRAC_DIR = 'YES',
   ♦ DIRECTION = (X, there, [Z]), [l_R]
   ♦ / INARIANT = 'YES',
   ♦ / ELEM_PRINCIPAUX= 'YES',
   ♦ / RESULTANT = lcmp, [l_K8]
   ♦ / MOMENT = lcmp, [l_K8]
   ♦ / NOT = (X, there, [Z]), [l_R]
```

5.2.2 Operand `TOUT_CMP`

/ TOUT_CMP

This keyword admits for argument only the text `‘YES’` and selects all the components defined in the catalogue of the sizes for the size relating to the fields specified by the keywords `RESULT` and `CHAM_GD`.

5.2.3 Operands `NOM_CMP`

Allows to define the components of the size of the treated field:

/ NOM_CMP : the components are introduced by name

5.2.4 Operand `REFERENCE MARK`

/ REFERENCE MARK

The choice of a reference mark allows among the following reference marks:

- reference mark `TOTAL` : Cartesian reference mark of definition of the grid,
- reference mark `POLAR` : standard polar reference mark of the plan `(OXY)` (order of the components: `(r, \theta)`),
- reference mark `ROOM` : reference mark of the plan made up of the tangent and normal vectors (in this order) instead of postprocessing. The normal vector is defined in each point of post - treatment like average of the normals on the right and on the left.

Definition of the normal instead of postprocessing.

In each point of postprocessing the normal is defined like average of the normals on the right and on the left.
The tangent vector is obtained by a rotation of \(-\pi/2\) starting from the normal vector.

In the case of the reference mark ROOM and of a way 3D (case of ASPIC for example), it will be necessary to provide:

\[
\text{VECT}_Y = (oy_1, oy_2, oy_3)
\]

Coordinates of a vector whose projection on the orthogonal level with the directing axis of the way will be taken as the normal with the way. The order of the components in a local reference mark is \((t, n, k)\).
Example of use:

![Diagram of a vector in a 3D space]

Figure 5.2.4-b

One wants to make an extraction on the way ABC according to the definite local reference mark above (local axis there in the total direction OX).

Here, one can find a vector constant in any point of the way to define the vector $\text{VECT}_Y = (1. , 0. , 0.)$.

This is possible because in any point this vector is already in the orthogonal plan with the way.
Figure 5.2.4-c
So on the other hand, one wishes to have the local axis z in the total direction OX [Figure 5.2.4-c], the vector VECT_Y will depend on the point considered:

- $(0,0,1.)$ is appropriate except in A (where $(0,-1,0.)$ is appropriate)
- $(0,-1.0.)$ is appropriate except in C (where $(0,0,1.)$ is appropriate)

It will thus be necessary in this case to cut out the way in two ways (AB and BC) and to define one VECT_Y different on each way.

- **reference mark USER**: defined by the data of 3 nautical angles (in degrees):

 $\text{ANGL}_\text{NAUT} = (\text{has}, B, C)$

- **reference mark CYLINDRICAL** defined by:

 $\text{ORIGIN} = (X, \text{there}, Z)$
 $\text{AXE}_Z = (oz1, oz2, oz3)$

 coordinates of O reference mark
 coordinates of a vector defining the axis Oz (axis of the cylinder).
 The order of the components in a cylindrical reference mark is $(r,z,0)$.

5.2.5 Operand TRAC_NOR

/ TRAC_NOR: only for modelings 2D and 3D.

Determination of the normal trace of a vector or a tensor of order 2: it is the typical case of the directional trace obtained when the direction u be identified with the normal n instead of post-treatment.

5.2.6 Operands $\text{TRAC}_\text{DIR}/\text{DIRECTION}$

/ TRAC_DIR: only for modelings 2D and 3D.

DIRECTION

Determination of the directional trace of a vector $v=(v_i)$ or of a tensor of order 2 $\sigma=(\sigma_{ij})$ in the direction $u=(u_i)$; i.e. scalar v_ku_k or of the vector $\sigma_{ik}u_k$.

Direction u is defined by means of the keyword DIRECTION whose arguments are the components of the vector u data in the order X, Y, Z and evaluated in the total reference mark. If this list contains only two values then, conventionally, the component according to Z vector u is regarded as worthless.

5.2.7 Operand INVARIANT

Postprocessing of a tensor of constraint or deformation of order 2 partners to the principal directions of the tensor:

- TRACE

 $Tr(\sigma) = \sum_{i=1}^{2ou3} \sigma_{ii}$

- VON_MIS

 $VM(\sigma) = \sqrt{\sum_{i=1}^{2ou3} \frac{3}{2} \left(\sigma_{ii} - \frac{1}{3} Tr(\sigma) \delta_{ii} \right)^2}$

- TRESCA

 $TR(\sigma) = \max \left| \left[\lambda_i - \lambda_j \right] \right|$ with λ_i eigenvalues of σ

- DETER

 $DET(\sigma) = \text{déterminant de } \sigma$

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
5.2.8 **Operand ELEM_PRINCIPAUX**

/ ELEM_PRINCIPAUX

Determination of the principal values of a tensor 2×2 or 3×3 of order 2. They are arranged in the order ascending their values.

5.2.9 **Operands RESULTANT / MOMENT / NOT**

Determination of the resultant and the moment of a field of torque on the place of post - treatment. `RESULTANT` can be used only if `OPERATION='EXTRACTION'`.

By means of computer, these keywords can apply to any field of size but so that the results have a physical direction, one will have to limit oneself to the fields of nodal forces and nodal reactions.

In this last case, 2 possibilities arise:

- the user wants to calculate the resultant of certain components of the field: he will enter behind the keyword `RESULTANT` a list of components to be taken among ['DX', 'DY'] in 2D and ['DX', 'DY', 'DZ'] in 3D or structural elements (the resultant of components of rotations not having a physical direction),

- the user wants to calculate the resultant and the moment of certain components of the field: he will enter behind the keyword `RESULTANT` and `MOMENT` 2 lists of the same components length to be taken among

 \[
 \text{formula} \quad ['DX', 'DY', 'DZ'] \quad \text{behind the keyword} \quad \text{RESULTANT} \\
 \text{formula} \quad ['DRX', 'DRY', 'DRZ'] \quad \text{behind the keyword} \quad \text{MOMENT} \\
 \]

Moreover, it will introduce behind the keyword `NOT` the list of the coordinates of the point by report to which the moment is evaluated.

If one notes P this point and M_i the points of postprocessing, the evaluated quantities will be:

- Resultant:

 $F = \sum_i F_i = \sum_i [FX_{M_i}, FY_{M_i}, FZ_{M_i}]$

- Moment:

 $m = \sum_i [P_M \wedge F_i] + \sum_i m_i$

where m_i indicate the list of the concentrated moments corresponding to the components of rotation introduced by the keyword `MOMENT`, relevant only in the case of elements of structure (beams, hulls, discrete).

Note:

1) In continuous mediums, one should not introduce behind `MOMENT` components of translation which would be regarded as concentrated moments and thus summoned with the true moments.

2) The calculation of `RESULTANT` and/or of `MOMENT` is carried out by a sum on a set of nodes. This sum has direction only if all the nodal forces (or moments) are expressed in the same reference mark. That wants to say that the keyword `REFERENCE MARK` can only take as value 'GLOBAL' or 'USER'.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
6 Nature of postprocessing

6.1 Operand OPERATION

◊ OPERATION =

 | ‘EXTRACTION’

The operation extraction of a field of size makes it possible to recover the values of one or more components or quantities derived from these components at the points of the place of postprocessing.

In the case of an extraction on one cham Elem, the values of the components extracted from this field are calculated as follows:

• if the place of postprocessing is determined by the keywords NODE or GROUP_NO, for each node the components are realised on all the elements contributing in this node,

 Note:

 The moyennations with the nodes of computed fields in local reference marks are licit only if the angles between these reference marks are weak. In the contrary case, they do not have a direction.

• if the place of postprocessing is a way confused with one or more edges of the grid, one makes the average on the elements having an intersection of nonworthless measurement with the way.

This can lead, for the same place of postprocessing, with appreciably different results:

![Diagram](image.png)

• if the place of postprocessing is a zone having double nodes (example of a crack) it is preferable to use the keywords NODE or GROUP_NO, rather than WAY. Indeed, if the way is on a zone of discontinuity, it is then not possible to distinguish the site from the nodes compared to this zone in the table of exit from POST_RELEVE_T.

If the place of postprocessing is defined by NODE = (N1, N2, N3, N4, N5), the values are realised on all the elements of the grid above.

If the place of postprocessing is defined as being the segment of origin N1 and of end N5, the values will be realised on the hatched elements.

In the case of quadratic elements (presence of nodes mediums), the average with the nodes tops can lead to more important weights of certain elements (function of cutting) compared to the nodes mediums which realise on 2 elements (thus of the same weight). One can thus be in the presence of oscillations between the values at the tops and the mediums.
This operation is limited to 6 components of field at the same time. Being given a scalar field \(U \) (typically a component of a size), the operation \('AVERAGE'\) calculate the following quantities (\(L \) indicating the length of the place of post-treatment \(C \) considered):

\[
\text{MOMENT}_0 = \frac{1}{L} \int_C U(s) \, ds \\
\text{MOMENT}_1 = \frac{12}{L^2} \int_C U(s) \left(s - \frac{L}{2} \right) \, ds \\
\text{MINIMUM} = \min_C U \\
\text{MAXIMUM} = \max_C U \\
\text{MOYE_INT} = \text{MOMENT}_0 - \frac{1}{2} \text{MOMENT}_1 \\
\text{MOYE_EXT} = \text{MOMENT}_0 + \frac{1}{2} \text{MOMENT}_1
\]

It is important that the place of postprocessing is traversed in a direction. If a group of nodes is used, one will take care to reorder the nodes, by using the order \text{DEFI_GROUP OPTION 'NOEUD_ORDO'}, [U4.22.01]. Thus, \(L\) X-coordinate curvilinear is defined since the node origin of the group, while following the broken line consisted the nodes.

The integrals above are evaluated while supposing \(U \) linear between two nodes. Thus, while noting \(U_i \) values of the field to the nodes (numbered by \(i = 1, \ldots, N \)) of X-coordinate \(s_i \), one a:

\[
\text{MOMENT}_0 = \frac{1}{2(s_N - s_1)} \sum_{i=1}^{N-1} (s_{i+1} - s_i)(U_i + U_{i+1}) \\
\text{MOMENT}_1 = \frac{2}{(s_N - s_1)^2} \sum_{i=1}^{N-1} (s_{i+1} - s_i)(U_i(s_{i+1} + 2s_i) + U_{i+1}(2s_{i+1} + s_i)) \\
- \frac{3}{(s_N - s_1)} \sum_{i=1}^{N-1} (s_{i+1} - s_i)(U_i + U_{i+1})
\]

\('EXTREMA'\)

calculate them \text{MIN}, \text{MAX}, \text{MINI_ABS}, \text{MAXI_ABS} of a field possibly reduces on a list of nodes or meshes, on all the components or a list of components.

6.2 Operand \text{MOYE_NOEUD}

Keyword allowing for choice of an impression detailed or realised in a point. This keyword is significant only for the sizes of the type \text{cham_elem} and for the operation \text{EXTRACTION}.

\text{MOYE_NOEUD} = \text{'YES'}

For each point of postprocessing, the displayed value of a component or a deducted quantity is obtained like average of the values given by each convergent mesh in this point. The way of making the average is the same one as for the fields calculated by \text{CALC_CHAMP} [U4.81.04].

\text{MOYE_NOEUD} = \text{'NOT'}

The list of the values obtained for each convergent mesh at the point of postprocessing is displayed.
7 Operands of access and impression of the contents of the tables created by POST_RELEVE_T

7.1 Principles of addressing of the contents of the tables

The statements of values are arranged in concepts of the type table. The tables are Bi - subscripted. The first index is the parameter, this one is defined by the operator according to the action considered (see [Table 7.4-a]). The second index is the variable, this one is defined by the user. The variables can be the names of the nodes, the names of the components or the numbers of the points of post - treatment along a way.

7.2 Operand ENTITLE

♦ ENTITLE = matable [K8]

Name of the table of statements of values.

7.3 Operand TITLE

◊ TITLE = title

Title which one wants to give to the table of statements of values. For more details, to see [U4.03.01].

7.4 Definition of the parameters and the variables

With the impression on the file RESULT, each parameter is printed on a column, the printed variables being line by line.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Parameters</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATION = ‘AVERAGE’</td>
<td>MOMENT_0 MOMENT_1 MINIMUM</td>
<td>Names of the components</td>
</tr>
<tr>
<td>(keywords TOUT_CMP, NOM_CMP)</td>
<td>MAXIMUM MOYE_INT MOYE_EXT</td>
<td></td>
</tr>
<tr>
<td>(example [§9.2.2])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATION = ‘MOYENNE_ARITH’</td>
<td>AVERAGE</td>
<td>Names of the components</td>
</tr>
<tr>
<td>(keywords TOUT_CMP, NOM_CMP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATION = ‘EXTREMA’</td>
<td>VALE</td>
<td>Names of the components</td>
</tr>
<tr>
<td>(keywords TOUT_CMP, NOM_CMP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATION = ‘EXTRACTION’</td>
<td></td>
<td>Names of the nodes if NODE or GROUP_NO</td>
</tr>
<tr>
<td>(keyword IMPR_NOEUD = ‘YES’)</td>
<td>-</td>
<td>Number of the point if WAY</td>
</tr>
<tr>
<td>OPERATION = ‘EXTRACTION’</td>
<td></td>
<td>Names of the nodes concaténées with the names of the meshes if NODE or GROUP_NO</td>
</tr>
<tr>
<td>(keyword IMPR_NOEUD = ‘NOT’)</td>
<td>-</td>
<td>Number of the point if WAY</td>
</tr>
<tr>
<td>TOUT_CMP NOM_CMP (examples [§9.1] and [§9.2.1])</td>
<td>ABSC_CURV COOR_X COOR_Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COOR_Z follow-up of the name of the components</td>
<td></td>
</tr>
<tr>
<td>NOM_CMP TRAC_NOR TRAC_DIR (examples [§9.3] and [§9.4])</td>
<td>ABSC_CURV COOR_X COOR_Y</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>COOR_Z DIR_1 DIR_2 DIR_3</td>
<td></td>
</tr>
<tr>
<td>INARIANT (example [§9.5])</td>
<td>ABSC_CURV COOR_X COOR_Y</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>COOR_Z VON_MIS TRESCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRACE DETER</td>
<td></td>
</tr>
<tr>
<td>ELEM_PRINCIPAUX (example [§9.6])</td>
<td>ABSC_CURV COOR_X COOR_Y</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>COOR_Z VAL_PR_1 VAL_PR_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VAL_PR_3</td>
<td></td>
</tr>
</tbody>
</table>

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
Phase of checking

It is checked that the headings are all different.

8.1 During the execution

This phase checks the coherence of the arguments between them. It relates to all occurrences of the keyword factor `ACTION`. One distinguishes 2 groups from checks.

first group is common to the arguments of the keyword `CHAM_GD` and `RESULT` (which is excluded mutually) and is reduced to the following checks:

- acceptability of the components: it is checked that the required components are quite present at the catalogue of description of the size to treat.
- coherence of the grid: it is checked that the grid on which the size was calculated is the grid on which the place of postprocessing (case of the keyword is built `WAY`) or contains the nodes passed in argument (case of the keywords `NODE` and/or `GROUP_NO`).

second group is specific to the keyword `RESULT`, and is reduced to the checks:

- checking of the acceptability of the field symbolic system: one makes sure that the field symbolic system argument of the keyword `NOM_CHAM` exist well for the type of concept `result` argument of the keyword `RESULT`,
- existence of at least a structure of data for the field symbolic system to treat.

At the conclusion of the phase of checking, in production run the following alternative arises:

- all occurrences of `ACTION` are correct and the operations are launched,
- at least an occurrence of `ACTION` is incorrect, then an error message fatal is produced with stop of the order. Information informs about the nature of the errors and the means of correcting them.

8.2 During the treatment

A new filter of checking is presented but never causes the stop of the order. This filter is reduced to the following checks:

- existence of the structure of data indicated by `CHAM_GD` or `RESULT` and one of the keywords giving access in a structure of data `RESULT`.

In the event of failure a message is transmitted and the following occurrence is treated.
• in the case of a calculation of tensorial invariants, one checks that the object of the treatment indicates well a tensor of order 2,

• in the case of a calculation of average or a request for extraction of values, one checks that the components to be treated were indeed calculated on the place of the post-treatment. In the event of failure of this checking, a message details the components nonavailable according to the meshes or nodes of the place of post-treatment.

If this last filter does not detect any impossibility of calculation, postprocessing is launched and the results are inserted in the table.
9 Examples

The examples which follow apply to the same physical problem (case test SHLV100G).

9.1 Keywords ‘EXTRACTION’ ‘AVERAGE’ ‘EXTREMA’ ‘MOYENNE_ARITH’

9.1.1 ‘EXTRACTION’

9.1.1.1 Orders

```
# extraction of the CMP of the tensor of the constraints on a list of nodes
#
t2 = POST_RELEVE_T (ACTION = _F (ENTITLE = 'ex_2',
    NODE = ('N1', 'N347', 'N21', 'N432', 'N39',
    'N229'),
    CHAM_GD = SIGMA,
    NOM_CMP = ('SIXX', 'SIYY', 'SIZZ', 'SIXY'),
    OPERATION = 'EXTRACTION') )
```

9.1.1.2 Result

```
--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1
FIELD BY ELEMENT WITH THE NODES
EXTRACTION TENSOR FORCED
TOTAL REFERENCE MARK
CHEMIN DE NOEUDS:
T2 CONCEPT OF THE TYPE TABL_POST_RELE CALCULATES FROM THE CONCEPT SIGMA TABLE: EX_2 EXIT OF THE T2 TABLE
ABSC_CURV COOR_X COOR_Y COOR_Z SIXX SIYY SIZZ SIXY
N1 0.00000E+00 1.00000E-01 0.00000E+00 -9.96843E-01 1.66549E+00 2.00597E-01 -2.97371E-04
N347 1.00000E+00 2.00000E-01 0.00000E+00 -2.39383E-04 6.67596E-01 2.00207E-01 -2.65146E-05
N21 2.14214E-01 9.23880E-02 3.82683E-02 -6.06951E-01 1.27563E+00 2.00603E-01 -9.41280E-01
N432 3.14214E-01 1.84776E-01 7.65367E-02 9.75617E-02 5.69793E-01 2.00206E-01 -2.36114E-01
N39 4.28428E-01 7.07107E-02 7.07107E-02 3.34029E-01 3.34628E-01 2.00597E-01 -1.33117E+00
```

9.1.2 ‘AVERAGE’

9.1.2.1 Orders

```
# average of the CMP of the tensor of the constraints on a list of nodes
#
T3 = POST_RELEVE_T (ACTION=_F (ENTITLES = 'ex_3',
    NODE = ('N1', 'N347', 'N21', 'N432', 'N39',
    'N229'),
    CHAM_GD = SIGMA,
    NOM_CMP = ('SIXX', 'SIYY', 'SIZZ', 'SIXY'),
    OPERATION = 'AVERAGE') ,)
```

9.1.2.2 Result

```
--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1
FIELD BY ELEMENT WITH THE NODES
AVERAGE TENSOR FORCED
TOTAL REFERENCE MARK
CHEMIN RELIANT DES NOEUDS:
N1 N347 N21 N432 N39 N229
CONCEPT T3 OF THE TYPE TABL_POST_RELE CALCULATES FROM THE CONCEPT SIGMA TABLE: EX_3 EXIT OF TABLE T3
```

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
<table>
<thead>
<tr>
<th></th>
<th>MOMENT_0</th>
<th>MOMENT_1</th>
<th>MINIMUN</th>
<th>MAXIMUN</th>
<th>MOYE INT</th>
<th>MOYE_EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYY</td>
<td>7.66354E-01</td>
<td>-1.17020E+00</td>
<td>3.33711E-01</td>
<td>1.66549E+00</td>
<td>1.35145E+00</td>
<td>1.81254E+00</td>
</tr>
<tr>
<td>SIZY</td>
<td>2.00403E-01</td>
<td>-1.44941E-05</td>
<td>2.00206E-01</td>
<td>2.00603E-01</td>
<td>2.00411E-01</td>
<td>2.00396E-01</td>
</tr>
<tr>
<td>SIXY</td>
<td>-5.40089E-01</td>
<td>-1.03327E+00</td>
<td>-1.33117E+00</td>
<td>-2.65146E-05</td>
<td>-2.34562E-02</td>
<td>-1.05672E+00</td>
</tr>
</tbody>
</table>
9.1.3 'EXTREMA'

9.1.3.1 Orders

```plaintext
# extrema of dx displacements and drz
#
T3 = POST_RELEVE_T (ACTION=_F (
    ENTITLE  = 'DEPL',
    RESULT   = RESU1,
    NOM_CHAM = 'DEPL',
    NOM_CMP  = ('DX', 'DRZ'),
    OPERATION = 'EXTREMA',
),
)
```

9.1.3.2 Result

<table>
<thead>
<tr>
<th>ENTITLE</th>
<th>RESU</th>
<th>NOM_CHAM</th>
<th>NUME_ORDRE</th>
<th>EXTREMA</th>
<th>NODE</th>
<th>CMP</th>
<th>VALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPL</td>
<td>RESU1</td>
<td>DEPL</td>
<td>1</td>
<td>MAX</td>
<td>D</td>
<td>DX</td>
<td>3.47E-03</td>
</tr>
<tr>
<td>DEPL</td>
<td>RESU1</td>
<td>DEPL</td>
<td>1</td>
<td>MIN</td>
<td>D</td>
<td>DRZ</td>
<td>-6.27E-03</td>
</tr>
<tr>
<td>DEPL</td>
<td>RESU1</td>
<td>DEPL</td>
<td>1</td>
<td>MAXI_ABS</td>
<td>D</td>
<td>DRZ</td>
<td>6.27E-03</td>
</tr>
<tr>
<td>DEPL</td>
<td>RESU1</td>
<td>DEPL</td>
<td>1</td>
<td>MINI_ABS</td>
<td>D</td>
<td>DX</td>
<td>8.99E-22</td>
</tr>
</tbody>
</table>

9.1.4 'MOYENNE_ARITH'

9.1.4.1 Orders

```plaintext
# average of dx displacements and dz on nodes
#
t4 = POST_RELEVE_T (ACTION=_F (
    ENTITLE  = 'DEPL',
    RESULT   = RESU1,
    NOM_CHAM = 'DEPL',
    GROUP_NO = ('GNAB',),
    NODE     = ('IT', 'OF'),
    NOM_CMP  = ('DX', 'DZ'),
    OPERATION = 'MOYENNE_ARITH',
),
)
```

9.1.4.2 Result

<table>
<thead>
<tr>
<th>ENTITLE</th>
<th>RESU</th>
<th>NOM_CHAM</th>
<th>NUME_ORDRE</th>
<th>CMP</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPL</td>
<td>RESU1</td>
<td>DEPL</td>
<td>1</td>
<td>DX</td>
<td>9.47536E-04</td>
</tr>
<tr>
<td>DEPL</td>
<td>RESU1</td>
<td>DEPL</td>
<td>1</td>
<td>DZ</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>
9.2 Operands \texttt{WAY} / \texttt{TRAC_NOR}

9.2.1 Orders

\begin{verbatim}
normal trace has a segment of the tensor of the constraints
\#
t4 = POST_RELEVE_T (ACTION = _F (
 ENTITLE = 'ex_4',
 WAY = AB,
 CHAM_GD = SIGMA,
 NOM_CMP = ('SIXX', 'SIYY', 'SIZZ', 'SIXY'),
 TRAC_NOR = 'YES',
 OPERATION = 'EXTRACTION',
))
\end{verbatim}

9.2.2 Result

\begin{verbatim}
--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1
FIELD BY ELEMENT WITH THE NODES
EXTRACTION TRACE_NORMALE TENSOR FORCED
LOCAL REFERENCE MARK
SEGMENT OF RIGHT-HAND SIDE
ORIGIN : (1.000000E-01, 0.000000E+00)
END : (2.000000E-01, 0.000000E+00)
CURVILINEAR X-COORDINATES: (0.000000E+00, 1.000000E-01)
T4 CONCEPT OF THE TYPE TABL_POST_RELE CALCULATES FROM THE CONCEPT SIGMA
TABLE: EX_4 EXIT OF THE T4 TABLE
\end{verbatim}

\begin{verbatim}
ABSC_CURV COOR_X COOR_Y COOR_Z DIR_1 DIR_2 DIR_3
00000001 0.00000E+00 1.00000E-01 0.00000E+00 0.00000E+00 2.97371E-04 -1.66549E+00 0.00000E+00
00000002 9.99995E-03 1.10000E-01 0.00000E+00 0.00000E+00 1.65667E-04 -1.43451E+00 0.00000E+00
00000003 1.99999E-02 1.20000E-01 0.00000E+00 0.00000E+00 1.49649E-04 -1.25935E+00 0.00000E+00
00000004 2.99999E-02 1.30000E-01 0.00000E+00 0.00000E+00 1.28087E-04 -1.12286E+00 0.00000E+00
00000005 3.99999E-02 1.40000E-01 0.00000E+00 0.00000E+00 1.10722E-04 -1.01444E+00 0.00000E+00
00000006 4.99999E-02 1.50000E-01 0.00000E+00 0.00000E+00 9.67799E-05 -9.26905E-01 0.00000E+00
00000007 6.00000E-02 1.60000E-01 0.00000E+00 0.00000E+00 8.49028E-05 -8.55210E-01 0.00000E+00
00000008 7.00000E-02 1.70000E-01 0.00000E+00 0.00000E+00 7.51468E-05 -7.95754E-01 0.00000E+00
00000009 8.99999E-02 1.80000E-01 0.00000E+00 0.00000E+00 6.71302E-05 -7.45902E-01 0.00000E+00
00000010 9.99999E-02 1.90000E-01 0.00000E+00 0.00000E+00 6.04973E-05 -7.03691E-01 0.00000E+00
00000011 1.00000E-01 2.00000E-01 0.00000E+00 0.00000E+00 2.65146E-05 -6.67596E-01 0.00000E+00
\end{verbatim}

9.3 Operands \texttt{TRAC_DIR} / \texttt{DIRECTION}

9.3.1 Orders

\begin{verbatim}
directional trace data by a vector
#
t5 = POST_RELEVE_T (ACTION = _F (
 ENTITLE = 'ex_5',
 WAY = AB,
 CHAM_GD = SIGMA,
 NOM_CMP = ('SIXX', 'SIYY', 'SIZZ', 'SIXY'),
 TRAC_DIR = 'YES',
 DIRECTION = (1., 0., 0.),
 OPERATION = 'EXTRACTION',
))
\end{verbatim}

9.3.2 Result

\begin{verbatim}
--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1
FIELD BY ELEMENT WITH THE NODES
EXTRACTION TRACE_DIRECTIONELLE TENSOR FORCED
\end{verbatim}
TOTAL REFERENCE MARK

SEGMENT OF RIGHT-HAND SIDE
ORIGIN : (1.000000E-01, 0.000000E+00)
END : (2.000000E-01, 0.000000E+00)
CURVILINEAR X-COORDINATES: (0.000000E+00, 1.000000E-01)

T5 CONCEPT OF THE TYPE TABL_POST_RELE CALCULATES FROM THE CONCEPT SIGMA TABLE: EX_5
EXIT OF THE T5 TABLE

<table>
<thead>
<tr>
<th>ABSC_CURV</th>
<th>COOR_X</th>
<th>COOR_Y</th>
<th>COOR_Z</th>
<th>DIR_1</th>
<th>DIR_2</th>
<th>DIR_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001</td>
<td>0.00000E+00</td>
<td>1.00000E-01</td>
<td>0.00000E+00</td>
<td>-9.96843E-01</td>
<td>-2.97371E-04</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000002</td>
<td>9.99995E-03</td>
<td>1.10000E-01</td>
<td>0.00000E+00</td>
<td>-7.66170E-01</td>
<td>-1.65667E-04</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000003</td>
<td>1.99999E-02</td>
<td>1.20000E-01</td>
<td>0.00000E+00</td>
<td>-5.91366E-01</td>
<td>-1.49649E-04</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000004</td>
<td>2.99999E-02</td>
<td>1.30000E-01</td>
<td>0.00000E+00</td>
<td>-4.54764E-01</td>
<td>-1.28087E-04</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000005</td>
<td>3.99999E-02</td>
<td>1.40000E-01</td>
<td>0.00000E+00</td>
<td>-3.46463E-01</td>
<td>-1.10722E-04</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000006</td>
<td>4.99999E-02</td>
<td>1.50000E-01</td>
<td>0.00000E+00</td>
<td>-2.59035E-01</td>
<td>-8.49028E-05</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000007</td>
<td>6.00000E-02</td>
<td>1.60000E-01</td>
<td>0.00000E+00</td>
<td>-1.87445E-01</td>
<td>-6.71302E-05</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000008</td>
<td>7.00000E-02</td>
<td>1.70000E-01</td>
<td>0.00000E+00</td>
<td>-1.28092E-01</td>
<td>-7.51468E-05</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000009</td>
<td>7.99999E-02</td>
<td>1.80000E-01</td>
<td>0.00000E+00</td>
<td>-7.83393E-02</td>
<td>-6.71302E-05</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000010</td>
<td>8.99999E-02</td>
<td>1.90000E-01</td>
<td>0.00000E+00</td>
<td>-3.62263E-02</td>
<td>-6.04973E-05</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>00000011</td>
<td>1.00000E-01</td>
<td>2.00000E-01</td>
<td>0.00000E+00</td>
<td>-2.39383E-04</td>
<td>-2.65146E-05</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>

9.4 Operand INVARIANT

9.4.1 Orders
invariants of the tensor of the constraints

t6 = POST_RELEVE_T (ACTION = _F (ENTITLE = 'ex_6', WAY = AB, CHAM_GD = SIGMA, INVARIANT = 'YES', OPERATION = 'EXTRACTION'),)

9.4.2 Result

--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1
FIELD BY ELEMENT WITH THE NODES

EXTRACTION INVARIANTS TENSOR FORCED
TOTAL REFERENCE MARK

SEGMENT OF RIGHT-HAND SIDE
ORIGIN : (1.000000E-01, 0.000000E+00)
END : (2.000000E-01, 0.000000E+00)
CURVILINEAR X-COORDINATES: (0.000000E+00, 1.000000E-01)

T6 CONCEPT OF THE TYPE TABL_POST_RELE CALCULATES FROM THE CONCEPT SIGMA TABLE: EX_6
EXIT OF THE T6 TABLE

<table>
<thead>
<tr>
<th>ABSC_CURV</th>
<th>COOR_X</th>
<th>COOR_Y</th>
<th>COOR_Z</th>
<th>VON_MIS</th>
<th>TRESCA</th>
<th>TRACE</th>
<th>DETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001</td>
<td>0.00000E+00</td>
<td>1.00000E-01</td>
<td>0.00000E+00</td>
<td>2.30953E+00</td>
<td>2.66234E+00</td>
<td>8.69246E-01</td>
<td>-3.33035E-01</td>
</tr>
<tr>
<td>00000002</td>
<td>9.99995E-03</td>
<td>1.10000E-01</td>
<td>0.00000E+00</td>
<td>1.91053E+00</td>
<td>2.20068E+00</td>
<td>8.68843E-01</td>
<td>-2.20368E-01</td>
</tr>
<tr>
<td>00000003</td>
<td>1.99999E-02</td>
<td>1.20000E-01</td>
<td>0.00000E+00</td>
<td>1.60813E+00</td>
<td>1.85049E+00</td>
<td>8.68679E-01</td>
<td>-1.49235E-01</td>
</tr>
<tr>
<td>00000004</td>
<td>2.99999E-02</td>
<td>1.30000E-01</td>
<td>0.00000E+00</td>
<td>1.37278E+00</td>
<td>1.57762E+00</td>
<td>8.68524E-01</td>
<td>-1.02346E-01</td>
</tr>
<tr>
<td>00000005</td>
<td>3.99999E-02</td>
<td>1.40000E-01</td>
<td>0.00000E+00</td>
<td>1.18613E+00</td>
<td>1.36911E+00</td>
<td>8.68375E-01</td>
<td>-7.04321E-02</td>
</tr>
<tr>
<td>00000006</td>
<td>4.99999E-02</td>
<td>1.50000E-01</td>
<td>0.00000E+00</td>
<td>1.03570E+00</td>
<td>1.18594E+00</td>
<td>8.68232E-01</td>
<td>-4.81069E-02</td>
</tr>
<tr>
<td>00000007</td>
<td>6.00000E-02</td>
<td>1.60000E-01</td>
<td>0.00000E+00</td>
<td>9.12789E-01</td>
<td>1.04266E+00</td>
<td>8.68094E-01</td>
<td>-3.21138E-02</td>
</tr>
<tr>
<td>00000008</td>
<td>7.00000E-02</td>
<td>1.70000E-01</td>
<td>0.00000E+00</td>
<td>8.11140E-01</td>
<td>9.23846E-01</td>
<td>8.67961E-01</td>
<td>-2.04163E-02</td>
</tr>
<tr>
<td>00000009</td>
<td>7.99999E-02</td>
<td>1.80000E-01</td>
<td>0.00000E+00</td>
<td>7.26193E-01</td>
<td>8.24241E-01</td>
<td>8.67832E-01</td>
<td>-1.17024E-02</td>
</tr>
<tr>
<td>00000010</td>
<td>8.99999E-02</td>
<td>1.90000E-01</td>
<td>0.00000E+00</td>
<td>6.54545E-01</td>
<td>7.39918E-01</td>
<td>8.67704E-01</td>
<td>-5.10453E-03</td>
</tr>
<tr>
<td>00000011</td>
<td>1.00000E-01</td>
<td>2.00000E-01</td>
<td>0.00000E+00</td>
<td>5.93563E-01</td>
<td>6.67835E-01</td>
<td>8.67563E-01</td>
<td>-3.19954E-05</td>
</tr>
</tbody>
</table>

9.5 Operand ELEM_PRINCIPAUX

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fld.html)
9.5.1 Orders

principal values of the tensor of the constraints
#
t7 = POST_RELEVE_T (ACTION = _F (ENTITIE = 'ex_7', WAY = AB, CHAM_GD = SIGMA, ELEM_PRINCIPAUX = 'YES', OPERATION = 'EXTRACTION',))

9.5.2 Result

--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1

FIELD BY ELEMENT WITH THE NODES

EXTRACTION TENSOR FORCED

TOTAL REFERENCE MARK

SEGMENT OF RIGHT-HAND SIDE

ORIGIN : (1.000000E-01, 0.000000E+00)

END : (2.000000E-01, 0.000000E+00)

CURVILINEAR X-COORDINATES: (0.000000E+00, 1.000000E-01)

T7 CONCEPT OF THE TYPE TABL_POST_RELE CALCULATES FROM THE CONCEPT SIGMA TABLE: EX_7 EXIT OF THE T7 TABLE

<table>
<thead>
<tr>
<th>ABSC_CURV</th>
<th>COOR_X</th>
<th>COOR_Y</th>
<th>COOR_Z</th>
<th>VAL_PR_1</th>
<th>VAL_PR_2</th>
<th>VAL_PR_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001</td>
<td>0.00000E+00</td>
<td>1.00000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-9.96844E-01</td>
<td>2.00594E-01</td>
</tr>
<tr>
<td>00000002</td>
<td>9.99995E-03</td>
<td>1.10000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-7.66170E-01</td>
<td>2.00463E-01</td>
</tr>
<tr>
<td>00000003</td>
<td>1.99999E-02</td>
<td>1.20000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-5.91137E-01</td>
<td>2.00428E-01</td>
</tr>
<tr>
<td>00000004</td>
<td>2.99999E-02</td>
<td>1.30000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-4.57646E-01</td>
<td>2.00393E-01</td>
</tr>
<tr>
<td>00000005</td>
<td>3.99999E-02</td>
<td>1.40000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-3.46464E-01</td>
<td>2.00358E-01</td>
</tr>
<tr>
<td>00000006</td>
<td>4.99999E-02</td>
<td>1.50000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-2.59035E-01</td>
<td>2.00323E-01</td>
</tr>
<tr>
<td>00000007</td>
<td>5.99999E-02</td>
<td>1.60000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-1.87445E-01</td>
<td>2.00288E-01</td>
</tr>
<tr>
<td>00000008</td>
<td>6.99999E-02</td>
<td>1.70000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-1.22092E-01</td>
<td>2.00253E-01</td>
</tr>
<tr>
<td>00000009</td>
<td>7.99999E-02</td>
<td>1.80000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-7.83395E-02</td>
<td>2.00218E-01</td>
</tr>
<tr>
<td>00000010</td>
<td>8.99999E-02</td>
<td>1.90000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-3.62666E-02</td>
<td>2.00183E-01</td>
</tr>
<tr>
<td>00000011</td>
<td>1.00000E-01</td>
<td>2.00000E-01</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>-2.39623E-04</td>
<td>2.00148E-01</td>
</tr>
</tbody>
</table>

9.6 Operand RESULTANT

9.6.1 Orders

calculation of the resultants of the CMP quoted on a group_no

T8 = POST_RELEVE_T (ACTION = _F(RESULT = resu, NOM_CHAM = 'FORC_NODA', ENTITIE = 'RESULTING', REFERENCE_MARK = 'TOTAL', OPERATION = 'EXTRACTION', GROUP_NO = 'known', RESULTANTE= ('DX', 'DY', 'DZ')))
9.7 Operands MOMENT and NOT

9.7.1 Orders

calculation of the resultants and the moments of the CMP quoted on a
group_no

T9 = POST_RELEVE_T (ACTION = _F (
 RESULT = resu,
 ENTITLE = 'RESULTANTE-MOMENT',
 REFERENCE MARK = 'TOTAL',
 OPERATION = 'EXTRACTION',
 GROUP_NO = 'known',
 MOMENT = ('DRX', 'DRY MARTINI', 'DRZ'),
 POINT= (0., 0., 0.),)
)

9.7.2 Result

--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1
NUME_ORDRE : 1
FIELD WITH THE NODES OF REFERENCE SYMBOL FORC_NODA
NUMBER OF ODRDRE: 1 INST: 0.00000E+00
RESULTANTE_MOMENT DISPLACEMENTS
MOMENT COMPARED TO THE POINT: 0.00000E+00 0.00000E+00 0.00000E+00
TOTAL REFERENCE MARK
CHEMIN RELIANT LES NOEUDS:
N69 N70 N71 N87 N88 N89 N97 N98
T9 CONCEPT OF THE TYPE TABL_POST_RELE CALCULATES FROM CONCEPT RESU COUNTS:
RESULTAN_1 EXIT OF THE T9 TABLE INST: 0.00000E+00
RESULT_X RESULT_Y RESULT_Z MOMENT_X
RESULTANT -1.000000000E+01 -2.724281611E-11 7.218027734E-11 -9.744077883E-12
RESULTANT -2.000000000E+00 -3.000000000E+00

9.8 Operands REFERENCE MARK : 'POLAIRE'

9.8.1 Orders

impression of the tensor of the constraints in POLAR reference mark on the
arc AC

#

t10 = POST_RELEVE_T (ACTION = _F (ENTITLE = 'ex_10',
 WAY = AC,
 REFERENCE MARK = 'POLAR',
 CHAM_GD = SIGMA,
 NOM_CMP = ('SIXX', 'SIYY', 'SIZZ', 'SIXY'),
 OPERATION = 'EXTRACTION'
))

9.8.2 Results

--- POST_TRAITEMENT NUMBER: 1 - FIELD NUMBER : 1
FIELD BY ELEMENT WITH THE NODES
EXTRACTION TENSOR FORCED
POLAR REFERENCE MARK
ARC OF A CIRCLE CENTER
 : (0.0000000E+00, 0.0000000E+00)
RAY : 1.000000E-01
ANGULAR SECTOR : (0.000000E+00, 2.250000E+01)

T10 CONCEPT OF THE TYPE TABL_POST_RELE CALCULATES FROM THE CONCEPT SIGMA TABLE: EX_10 EXIT OF THE T10 TABLE

00000001	0.00000E+00	1.00000E-01	0.00000E+00	0.00000E+00	-9.80501E-01	1.64914E+00	2.00593E-01	2.07951E-01
00000002	7.85455E-03	9.96917E-02	7.84647E-03	0.00000E+00	-9.88675E-01	1.65731E+00	2.00591E-01	1.03814E-01
00000003	1.57084E-02	9.87688E-02	1.56438E-02	0.00000E+00	-9.88675E-01	1.65730E+00	2.00588E-01	1.03815E-01
00000004	2.35622E-02	9.72369E-02	2.33448E-02	0.00000E+00	-9.88674E-01	1.65730E+00	2.00589E-01	1.03815E-01
00000005	3.14159E-02	9.51056E-02	3.09017E-02	0.00000E+00	-9.88673E-01	1.65732E+00	2.00593E-01	1.03813E-01
00000006	3.92699E-02	9.23880E-02	3.82683E-02	0.00000E+00	-9.96843E-01	1.66550E+00	2.00594E-01	-3.06827E-04