1 Goal

Post-to treat the results in generalized coordinates produced by \texttt{DYNA_TRAN_MODAL}. Two options are available: post treatment of nonthe linearities of shock or the relations effort-displacement. In the first case, one chooses a diagnosis of wear or a better knowledge of the shocks which have occurred during the transitory analysis. The contents of the produced table are printable on the file \texttt{RESULT} by the order \texttt{IMPR_TABLE} [U4.91.03].
2 Syntax

table [table_sdaster] = POST_DYNA_MODA_T
 ♦ RESU_GENE = tg, [tran_gene]
 ♦ / SHOCK = _F {
 ♦ INST_INIT = -1.0, [DEFECT] / t0, [R]
 ♦ INST_FIN = /999. , [DEFECT] / T1, [R]
 ♦ NB_BLOC = /1, [DEFECT] / Nb, [I]
 ♦ SEUIL_FORCE = /0.0 [DEFECT] / S, [R]
 ♦ DUREE_REPOS = /0.0, [DEFECT] / D, [R]
 ♦ OPTION =/’WEAR’, [DEFECT] /’IMPACT’,
 ♦ NB_CLASSE = / 10,[DEFECT] / nc,[I]
 },

 ♦ RELA_EFFO_DEPL = _F {
 ♦ NODE = noeu, [node]
 ♦ NOM_CMP = noncmp, [K8]
 },

 ♦ INFORMATION = / 1,
 / 2,
 ♦ TITLE = title, [l_Kn]
3 Operands

3.1 Operand RESU_GENE

- RESU_GENE = tg
 Result of a transitory calculation by modal recombination, produced by the operator DYNA_TRAN_MODAL [U4.53.21].

3.2 Keyword SHOCK

- SHOCK
 Keyword factor allowing to specify that one wishes an analysis of the non-linearities of shock taken into account in modal transitory calculation.

3.2.1 Operand INST_INIT

- INST_INIT = T₀
 Moment of beginning of the average of the signals and analysis of the shocks. By default T₀ corresponds to the first moment of transitory calculation by modal recombination.

3.2.2 Operand INST_FIN

- INST_FIN = T₁
 Moment of end of the average of the signals and analysis of the shocks. (T₁ = 999. value by default).

3.2.3 Operand NB_BLOC

- NB_BLOC = Nb
 Many temporal blocks of division interval [T₀, T₁] for the average of the signals (1 by default).
 The keyword is not used for the option 'IMPACT'.

3.2.4 Operand SEUIL_FORCE

- SEUIL_FORCE = S
 Threshold characterizing a phase of contact, (|fn| > s ⇒ contact établi)
 (S = 0. value by default).

3.2.5 Operand DUREE_REPOS

- DUREE_REPOS = D
 With D minimum duration of rest characterizing the end of a shock.
 If one indicates per T_c end of the shock then
 \[\forall t \in [t_c, t_c + d] \rightarrow |f_n| < s \]

 The duration of rest D is the minimum duration during which no contact on the node is recorded, in order to determine the end of an event of shock and its duration.
3.2.6 **Operand OPTION**

◊

```
OPTION = / 'WEAR'
   / 'IMPACT'
```

This keyword makes it possible to choose between a postprocessing for a diagnosis of wear (keyword ‘WEAR’) or of a better knowledge of the possible shocks which have occurred during the transitory analysis (keyword ‘IMPACT’). This last post treatment is adapted to the calculation of the interns of the power stations REFERENCE MARK to see [§4].

3.2.7 **Operand NB_CLASSE**

◊

```
NB_CLASSE = nc
```

Many classes which the user wants to distinguish during the development of the histogram describing maximum forces of impact. By default, nc = 10.

3.3 **Keyword RELA_EFFO_DEPL**

◊

```
RELA_EFFO_DEPL
```

Keyword factor allowing an analysis of the relations of non-linearity effort-displacement. One files in the table result the name of the relation to the node observed, the moments of analysis and the maximum reached by the component observed during the analysis. All the phases with nonlinear behavior are determined and one files in the table result for each one:

- the initial moment and the final moment of the interval of the nonlinear phase,
- the maximum reaches and the moment associated in this interval.

The parameters of the produced table are described in the following table:

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELATION</td>
<td>K8</td>
<td>name of relation to the node observed</td>
</tr>
<tr>
<td>NODE</td>
<td>K8</td>
<td>name of the treated node</td>
</tr>
<tr>
<td>CMP</td>
<td>K8</td>
<td>name of the component</td>
</tr>
<tr>
<td>PHASE</td>
<td>I</td>
<td>number of the phase</td>
</tr>
<tr>
<td>INST_INIT</td>
<td>R</td>
<td>initial moment of the interval of the nonlinear phase</td>
</tr>
<tr>
<td>INST_FIN</td>
<td>R</td>
<td>final moment of the interval of the nonlinear phase</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>R</td>
<td>maximum reached</td>
</tr>
<tr>
<td>INST_MAXI</td>
<td>R</td>
<td>moment associated to the maximum reached</td>
</tr>
</tbody>
</table>

3.3.1 **Operand NODE**

◊

```
NODE = noeu
```

Name of the node of the structure on which the nonlinear relation to treat was defined.

3.3.2 **Operand NOM_CMP**

◊

```
NOM_CMP = noncmp
```

Name of the component treated with the node noeu.
3.4 **Operand INFORMATION**

◊ INFORMATION = imp, level of the impressions

/ 1 no impression on the file message (all is stored in the produced table)
/ 2 impression amongst step of computing time

3.5 **Operand TITLE**

◊ TITLE = title

title is the title of calculation. It will be printed at the top of the results. It is stored in the concept table.

4 **Checking - Execution**

4.1 **For the keyword factor SHOCK**

The value of INST_FIN is compared with the final moment t_f result tran_gene. The value of INST_FIN reserve is $\min(t_f, t_1)$.

If the value of INST_INIT t_0 is higher than the value of INST_FIN, one stops in error.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
4.1.1 Execution with option ‘IMPACT’

For each nonlinearity of shock, one calculates and one files in the table result:

- shocks and associated sizes:
 for each shock, one has the value of the moment when the force is maximum, the value of the maximum force and the impulse, duration of the shock, impact speed and the number of rebounds,

- total data of the shock:
 on the whole of the noted shocks, one specifies: the absolute maximum of force of shock, the median value of maximum of forces of shock and the standard deviation of the extrema of force of shocks,

- the histogram describing the max of the forces of impact:
 one has the number of classes of the histogram, the values of his X-coordinates (force min and max of each class) and the density of probability of the maximum force of each class.

4.1.2 Execution with the option ‘WEAR’

For each nonlinearity of shock, one calculates and one files in the table result:

- the median values min, max, standard deviation, RMS of relative displacements of the nodes of shocks in their total reference mark,
- median values and RMS (over the time of shock and total time) like min and max of the normal and tangential forces of shock,
- the number of average shocks on each connection of shock, the time of average shock, the time of average rebound,
- power of average wear calculated within the meaning of ARCHARD [bib1]:

\[
P_{\text{usure}} = \frac{1}{T} \int_0^T F_N(t) \cdot V_T(t) \cdot dt
\]

4.2 For the keyword factor RELA_EFFO_DEPL

It is checked that the node noeu corresponds to a nonlinear relation.

One prints using the order IMPR_TABLE:

<table>
<thead>
<tr>
<th>RELATION</th>
<th>NODE_CMP</th>
<th>PHASE</th>
<th>INST_INIT</th>
<th>INST_FIN</th>
<th>MAXIMUM</th>
<th>INST_MAXI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON_LIN</td>
<td>N100</td>
<td>DRY MARTINI</td>
<td>1</td>
<td>1.24000E+00</td>
<td>1.26600E+00</td>
<td>1.80716E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.25200E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON_LIN</td>
<td>N100</td>
<td>DRY MARTINI</td>
<td>2</td>
<td>2.02600E+00</td>
<td>2.09000E+00</td>
<td>-2.00433E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.05800E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON_LIN</td>
<td>N100</td>
<td>DRY MARTINI</td>
<td>3</td>
<td>3.00000E+00</td>
<td>3.04000E+00</td>
<td>-1.89110E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.02200E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON_LIN</td>
<td>N100</td>
<td>DRY MARTINI</td>
<td>4</td>
<td>3.10400E+00</td>
<td>3.20400E+00</td>
<td>3.50715E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.15400E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON_LIN</td>
<td>N100</td>
<td>DRY MARTINI</td>
<td>5</td>
<td>3.26000E+00</td>
<td>3.36000E+00</td>
<td>-2.91359E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.30000E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON_LIN</td>
<td>N100</td>
<td>DRY MARTINI</td>
<td>6</td>
<td>3.41400E+00</td>
<td>3.43200E+00</td>
<td>1.73099E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.42400E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
5 Examples of use

5.1 Example with the option IMPACT : to launch of an oscillator with shock

Test SDND101 here is presented. It is a question of calculating the answer of a system mass-arises initial speed \(V_0 \) nonworthless, being able to impact on a thrust with shock. The initial game is null.

![Diagram of a mass-spring system with initial velocity](image)

One compares the values of the moments of maximum force, value of maximum force, duration of the time of shock, value of the impulse and impact speed as well as the number of elementary impacts for the first two oscillations of the system to the analytical values.

Command file

```plaintext
CONTINUATION ()
# the system mass-arises east releases with an initial speed V0
#
VITEPHYS = CREA_CHAMP (MAILLAGE= beam, TYPE_CHAM= 'NOEU_DEPL_R',
   CHAM_NO = vectass,
   AFFE= (TOUT= 'YES',
      NOM_CMP= ('DX'),
      VALE_R=  V0 )
)
#
VITINI = PROJ_VECT_BASE ( BASE= modes, VECT_ASSE= VITEPHYS,
   NUME_DDL_GENE= numege,
   TYPE_VECT= 'QUICKLY')
#
MASSEGEN = PROJ_MATR_BASE ( BASE= modes,
   NUME_DDL_GENE= numege,
   MATR_ASSE= matmass,
   )
#
RIGIDGEN = PROJ_MATR_BASE ( BASE= modes,
   NUME_DDL_GENE= numege,
   MATR_ASSE= matrigi,
   )
#
PLANZ = DEFI_OBSTACLE (TYPE= 'PLAN_Z')
PLANY = DEFI_OBSTACLE (TYPE= 'PLAN_Y')
#
DYNAMODA = DYNA_TRAN_MODAL ( METHOD = 'EULER',
   MASSE_GENE = MASSEGEN,
   RIGI_GENE  = RIGIDGEN,
   AMOR_REDUIT= 0.,
   ETAT_INIT=_F (VITE_INIT_GENE=VITINI),
   INCREMENT=_F ( INST_INIT= 0.,
      INST_FIN=  0.5,
      PAS=  0.0005),
```

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
Postprocessing of the efforts of shock

```plaintext
All = POST_DYNA_MODA_T ( RESU_GENE = DYNAMODA,
CHOC= _F ( INST_INIT = 0. ,
INST_FIN = 0.495,
SEUIL_FORCE = 0. ,
DUREE_REPOS = 0. ,
OPTION = 'IMPACT',
NB_CLASSE = 8 ) ),
INFORMATION = 1 )

IMPR_TABLE ( TABLE = All,
FILTER = ( NOM_PARA= 'CALCULATION',
VALE_K = 'TOTAL'),
NOM_PARA= ( 'NODE', 'F_MAX_ABS', 'F_MAX_MOY',
'F_MAXETYPE' ))
```

6 Bibliography

1) ARCHARD: The wear of metals under unlubriricated conditions Proc-Roy-Ploughshare. (1956).