Macro-order MACRO_EXPANS

1 Goal

L macro-order has MACRO_EXPANS allows to carry out the expansion of experimental data on a digital model starting from a base of expansion. It consists of the succession of the operators EXTR_MODE, PROJ_MESU_MODAL, REST_GENE_PHYS, and PROJ_CHAMP.
2 Syntax

MACRO_EXPANS (

 ♦ MODELE_CALCUL = _F (♦ MODEL = modelnum, [modele_sdaster]
 ♦ BASE = bases, [mode_meca]
 ◊ NUME_MODE = digital
 [l_I]
 ◊ NUME_ORDRE = numord [l_I]
)

 ♦ MODELE_MESURE = _F (♦ MODEL = modelexp, [modele_sdaster]
 ♦ MEASUREMENT = my, [mode_meca]
 ◊ NUME_MODE = digital
 [l_I]
 ◊ NUME_ORDRE = numord [l_I]
)

 ◊ RESOLUTION = _F (◊ METHOD =/'LU' [DEFECT]
 / 'SVD'

 # If METHOD = 'SVD' then :
 ◊ EPS =/0.0 [DEFECT] [R]
 / eps
 ◊ REGUL =/'NOT' [DEFECT]
 / 'NORM_MIN'
 / 'TIK_RELA'

 # If REGUL! = 'NOT' then :
 ◊/COEF_PONDER = /0. [DEFECT] [l_R]
 /W [l_fonction]
 / COEF_PONDER_F = w_f [l_fonction]
),

 ◊ NUME_DDL = num_ddl, [nume_ddl]
 ◊ RESU_NX = res_nx, [mode_meca]
 ◊ RESU_EX = res_ex, / [mode_meca]
 ◊ RESU_ET = res_et, / [mode_meca]

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience. Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
◊ RESU_RD = res_rd,
)

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2017 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3 Operands

3.1 Keyword MODELE_CALCUL

♦ MODELE_CALCUL

Keyword factor gathering the whole of the keywords relating to the base of expansion, in general obtained by calculation (from where the name).

3.1.1 Keyword MODEL

♦ MODEL = modelnum

modele_sdaster indicating the model on which one will extend measurement.

3.1.2 Keyword BASE

♦ BASE = bases

modele_meca being used as a basis for the expansion.

The base should not have vectors colinéaires, and the number of modes used must be lower than the number of DDL of measurement (preferably, \(N_{\text{modes}} < N_{\text{my}} \)) or else, the system to be solved is under-given, which can lead to a fatal error, and a stop of the code.

3.1.3 Keyword NUME_ORDRE/NUME_MODE

List of the sequence numbers or the modal positions of the modes which one wishes to use for the expansion.

3.2 Keyword MODELE_MESURE

♦ MODELE_MESURE

Keyword factor gathering the whole of the keywords relating to the experimental base which one wishes to extend.

3.2.1 Keyword MODEL

♦ MODEL = modelexp

modele_sdaster indicating the model associated with the experimental grid. The knowledge of the nodes is in general enough to determine an experimental grid. The associated model can be then defined in the following way:

```plaintext
MODELEXP = AFFE_MODELE (GRID = MAIEXP,
                         AFFE = _F (GROUP_MA = 'SENSORS',
                                   PHENOMENON = 'MECHANICAL',
                                   MODELING = 'DIS_T',),);

CAREXP = AFFE_CARA_ELEM (MODEL = MODELEXP,
                         DISCRETE = _F (GROUP_MA = 'SENSORS',
                                        REFERENCE_MARK = 'TOTAL',
                                        CARA = 'K_T_D_N',
                                        VALE = (100.0, 100.0, 100.0),
                         ),);
```

The value of the stiffnesses given is arbitrary, it is not useful in calculation.
NB: to use the operator `PROJ_CHAMP` in the macro one, one needs to generate a `nume_ddl` associated with this grid. For that, it is moreover necessary to assign one material to the model, to calculate the elementary matrices (rigidity for example) and to create classification with `NUME_DDL`.

3.2.2 Keyword **MEASUREMENT**

- MEASUREMENT = my
dyna_harmo or mode_meca to extend. These data are in general imported of a result of measurement (file .unv) with the operator `LIRE_RESU`.

3.2.3 Keyword **NUME_ORDRE/NUMÉRIQUE_MODE**

List of entireties. Allows to select the modes which one wishes to extend.

3.2.4 Keyword **NOM_CHAM**

- .NOM_CHAM = ‘DEPL’...
Experimental size to extend.

3.3 Keyword **RESOLUTION**

Two techniques of resolution are proposed for the opposite problem: Truncated SVD, method LU. For the SVD, one can choose to truncate the singular values smallest to improve conditioning of the problem (choice of ‘eps’), or to use a regularization of the Tikhonov type. One will be able to refer to the documents [U4.73.01] (Doc. of `PROJ_MESU_MODAL`) and [R6.03.01] (Doc. of reference on the decomposition in singular values).

3.4 Keyword **NUME_DDL**

Allows to force classification to be used for the operator `PROJ_CHAMP`. For more precision, to refer to the documentation of `PROJ_CHAMP` [U4.72.05].

3.5 Keywords **RESU_XX**

Keywords `RESU_XX` pre-déclarer names of the outgoing concepts allow:
- `RESU_NX` is the truncation of the digital base (keyword `BASE` under the keyword factor `MODELE_CALCUL`) with the modes chosen in `NUME_MODE`,
- `RESU_EX` is the truncation of the experimental base (keyword `MEASUREMENT` under the keyword factor `MODELE_MESURE`) with the modes chosen in `NUME_MODE`,
- `RESU_ET` is the result of the expansion,
- `RESU_RD` is the reprojection on the experimental model of the wide base; it is intéressaant to check if the reprojection of the wide result is comparable to the initial experimental data.