Titre : SSNA108 - Modèles de Weibull et de Rice et Tracey

Responsable : PARROT Aurore

Date: 29/05/2013 Page: 1/4 Clé: V6.01.108 Révision

023cdf2cab95

SSNA108 - Models of Weibull, Bordet and of Rice and Tracey

Summary:

This test of nonlinear quasi-static mechanics makes it possible to validate the models of Weibull and Rice - Tracey in 2D (order POST_ELEM) and of Bordet (order CALC_BORDET) in the case of a notched axisymmetric test-tube subjected to a simple tensile test.

The modeling of the test-tube is carried out with elements 2D (QUA8).

Titre: SSNA108 - Modèles de Weibull et de Rice et Tracey

Date: 29/05/2013 Page: 2/4 Clé: V6.01.108 Révision Responsable: PARROT Aurore

023cdf2cab95

Problem of reference 1

1.1 Geometry

A notched cylindrical test-tube is considered:

diameter of the test-tube: 18 mm,

ray of the notch: 5 mm.

1.2 **Properties of material**

One adopts an elastoplastic law of behavior of Von Mises with isotropic work hardening TRACTION whose traction diagram is given point by point:

3	0.0	027	0,005	0.01	0,015	0.02	0,025	0.03	0.04	0.05	0,075	0.1	
σ (<i>MP</i>	a) 55	5	589	631	657	676	691	704	725	741	772	794	
0.40													
0,125	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9				
812	827	851	887	912	933	950	965	5 978	990				

The deformations used in the relation of behavior are the linearized deformations. The Young modulus E rise with $200\,GPa$ while the Poisson's ratio ν is worth 0.3.

The coefficients of the models of Weibull and Bordet used are the following:

$$m=8$$
,
 $V_0=100 \mu m$,
 $\sigma_u=2630 MPa$,
 $\sigma_{ys,0}=\sigma_{ys}555MPa$,
 $\sigma_{th}=600MPa$.

1.3 **Boundary conditions and loadings**

While referring to the figure of [§3.1] the boundary conditions are the following ones:

- BC: following imposed displacement (Y),
- OA: displacements blocked according to (Y),
- OB: displacements blocked according to (X).

1.4 **Initial conditions**

Worthless constraints and deformations.

Titre : SSNA108 - Modèles de Weibull et de Rice et Tracey

Responsable : PARROT Aurore

Date : 29/05/2013 Page : 3/4 Clé : V6.01.108 Révision

023cdf2cab95

2 Reference solution

2.1 Method of calculating

Digital solution calculated by CASTEM2000 and Zébulon for the models of Weibull and Rice and Tracey; test of nonregression for the model of Bordet.

2.2 Sizes and results of reference

Constraints of Weibull (WEIBULL) and of Bordet as well as the rate of triaxiality (RICE_TRACEY) on various meshs were calculated at various moments.

2.3 Uncertainties on the solution

Precision of the codes.

3 Modeling A

3.1 Characteristics of the grid

3.2 Characteristics of the grid

Many nodes: 1219

Many meshs and types: 320 (QUA8).

3.3 Sizes tested and results

The variation noted with the reference solution remains lower than 1%.

4 Results of modeling A

4.1 Values tested

One tests the structural parameters of data results:

Identification	Reference	Test	Tolerance	
INST for NUME_ORDRE= 1 0	10.0	ANALYTICAL	0,10%	
ITER_GLOB	8	NON_REGRESSION	0,00%	

Titre : SSNA108 - Modèles de Weibull et de Rice et Tracey

Responsable: PARROT Aurore

Date : 29/05/2013 Page : 4/4 Clé : V6.01.108 Révision

023cdf2cab95

Model of Weibull:

Identification					Reference	Test	Tolerance
	C ontrainte	of	Weibull	for	1,4079E+003	NON_DEFINI	0,1% (relative)
	INST = 2,0						
	C ontrainte	of	Weibull	for	2,4973E+003	NON_DEFINI	0,1% (relative)
	INST = 4,0						
	C ontrainte	of	Weibull	for	3,3332E+003	NON_DEFINI	0,1% (relative)
	INST = 6,0						
	C ontrainte	of	Weibull	for	3,7537E+003	NON_DEFINI	0,1% (relative)
	INST = 8,0						
_	C ontrainte	of	Weibull	for	4,0477E+003	NON_DEFINI	0,1% (relative)
	INST = 10.0						

Model of Rice-Tracey:

Identification		Reference	Test	Tolerance
Growth rate of the cavity	for	1,0000E+000	NON_DEFINI	0,1% (relative)
$\frac{INST = 1,0}{\text{Volume of the cavity}}$	for	3,7500E+000	NON_DEFINI	0,1% (relative)
$\frac{INST=1,0}{\text{Growth rate of the cavity}}$	for	1,0014E+000	NON DEFINI	0,1% (relative)
INST = 3.0	101	1,001421000	NON_BELLINE	o, 170 (relative)
Volume of the cavity $INST = 3.0$	for	6,2372E-001	NON_DEFINI	0,1% (relative)
Growth rate of the cavity $INST = 5,0$	for	1,0076E+000	NON_DEFINI	0,1% (relative)
Growth rate of the cavity $INST = 7.0$	for	1,0170E+000	NON_DEFINI	0,1% (relative)
Growth rate of the cavity $INST = 10,0$	for	1,0315E+000	NON_DEFINI	0,1% (relative)

Model of Bordet:

ldeı	ntifica	ation		Reference	Test	Tolerance	
Constraint INST = 2,0	of	Bordet	for	0,0000E+000	NON_DEFINI	0,1% (relative)	
Constraint INST = 4,0	of	Bordet	for	7,2180E+002	NON_DEFINI	0,1% (relative)	
Constraint $INST = 6.0$	of	Bordet	for	1,3024E+003	NON_DEFINI	0,1% (relative)	
Constraint INST = 8,0	of	Bordet	for	1,7305E+003	NON_DEFINI	0,1% (relative)	
Constraint $INST = 10,0$	of)	Bordet	for	2,0225E+003	NON_DEFINI	0,1% (relative)	

5 Summary of the results

Results got by *Code_Aster* are close to the reference solution since the variation with the reference solution is lower than 1%.