Operator DEFI_INTE_SPEC

1 Goal

To define a matrix of spectral concentration (one also says: matrix interspectrale). The terms of the matrix are defined by:

- constants (white vibration),
- existing complex functions,
- the analytical formula of KANAI-TAJIMI.

Product a structure of data of the type interspectre.
2 Syntax

```csharp
intsp [interspectre] = DEFI_INTE_SPEC

◊ DIMENSION = / 1 / N [DEFECT]

◊ PAR_FONCTION = F{
    ◆ / NUME_ORDRE_I = I [I]
    / NUME_ORDRE_J = J [I]
    / NOEUD_I = nd_i [node]
    / NOEUD_J = nd_j [node]
    / NOM_CMP_I = ncmp_i [KN]
    / NOM_CMP_J = ncmp_j [KN]
    ◆ FUNCTION = fonction [fonction_c]
}

◊ KANAI_TAJIMI = F{
    ◆ / NUME_ORDRE_I = I [I]
    / NUME_ORDRE_J = J [I]
    / NOEUD_I = nd_i [node]
    / NOEUD_J = nd_j [node]
    / NOM_CMP_I = ncmp_i [KN]
    / NOM_CMP_J = ncmp_j [KN]
    ◆ FREQ_MIN = / 0. / fmin [DEFECT]
    ◆ FREQ_MAX = / 100. / fmax [DEFECT]
    ◆ NOT = / 1. / not [DEFECT]
    ◆ VALE_R = valr [R]
    / VALE_C = valc [C]
    ◆ AMOR_REDUIT= / 0.60 / amor [DEFECT]
    ◆ FREQ_MOY = / 5. / fmoy [DEFECT]
    ◆ Interpol = | 'FLAX' [DEFECT]
    | 'LOG' ['DEFECT]
    | 'NOT' ['DEFECT]
    ◆ PROL_GAUCHE= / 'EXCLUDED' ['DEFECT]
    / 'CONSTANT' ['DEFECT]
    / 'LINEAR' ['DEFECT]
    ◆ PROL_DROITE= / 'EXCLUDED' ['DEFECT]
    / 'CONSTANT' ['DEFECT]
    / 'LINEAR' ['DEFECT]
}
```

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
\texttt{CONSTANT = _F (}
 \texttt{/ NUME_ORDRE_I = I} \texttt{[I]}
 \texttt{/ NUME_ORDRE_J = J} \texttt{[I]}
 \texttt{/ NOEUD_I = nd_i} \texttt{[node]}
 \texttt{/ NOEUD_J = nd_j} \texttt{[node]}
 \texttt{/ NOM_CMP_I = ncmp_i} \texttt{[KN]}
 \texttt{/ NOM_CMP_J = ncmp_j} \texttt{[KN]}
\texttt{)}

\texttt{_} \texttt{FREQ_MIN = / 0.} \texttt{[DEFECT]}
\texttt{/ fmin} \texttt{[R]}
\texttt{_} \texttt{FREQ_MAX = / 100.} \texttt{[DEFECT]}
\texttt{/ fmax} \texttt{[R]}
\texttt{_} \texttt{NOT = / 1.} \texttt{[DEFECT]}
\texttt{/ not} \texttt{[R]}

\texttt{_} \texttt{VALE_R = / 1.} \texttt{[DEFECT]}
\texttt{/ valr} \texttt{[R]}
\texttt{_} \texttt{VALE_C = valc} \texttt{[C]}

\texttt{_} \texttt{Interpol = \| 'FLAX'} \texttt{[DEFECT]}
\texttt{\| 'LOG'}
\texttt{\| 'NOT'}

\texttt{_} \texttt{PROL_GAUCHE = / 'EXCLUDED'} \texttt{[DEFECT]}
\texttt{\| 'CONSTANT'}
\texttt{\| 'LINEAR'}

\texttt{_} \texttt{PROL_DROITE = / 'EXCLUDED'} \texttt{[DEFECT]}
\texttt{\| 'CONSTANT'}
\texttt{\| 'LINEAR'}

\texttt{)}

\texttt{_} \texttt{TITLE = title} \texttt{[l_Kn]}
\texttt{_} \texttt{INFORMATION = / 1} \texttt{[DEFECT]}
\texttt{/ 2}
3 Operands

3.1 Operand **DIMENSION**

◊ **DIMENSION = N**

Dimension of the matrix of spectral concentration, stored in a table of interspectres (tabl_intsp).

3.2 **Keyword PAR_FONCTION**

◊ **PAR_FONCTION =**

Keyword factor, makes it possible to define a term \((i, j)\) matrix interspectrale starting from concepts of the type function_c already definite.

3.2.1 **Operands NUME_ORDRE_I, NUME_ORDRE_J**

NUME_ORDRE_I = I
NUME_ORDRE_J = J

Couples indices (line, column) of the matrix on which one will affect a function.

These operands are excluded with the operands NOEUD_I NOEUD_J NOM_CMP_I NOM_CMP_J.

3.2.2 **Operands NOEUD_I, NOEUD_J, NOM_CMP_I, NOM_CMP_J**

NOEUD_I = nd_i [node]
NOEUD_J = nd_j [node]
NOM_CMP_I = ncmp_i [KN]
NOM_CMP_J = ncmp_j [KN]

These operands correspond to the names of the nodes and the components (line, column) of the matrix where one will affect a function.

These operands are excluded with the operands NUME_ORDRE_I NUME_ORDRE_J.

3.2.3 **Operand **FUNCTION****

◊ **FUNCTION: fonct**

fonct is a concept of the type function_c.

3.3 **Keyword KANAI_KAJIMI**

◊ **KANAI_TAJIMI =**

Keyword factor, makes it possible to define a function spectral concentration by using the model of Kanai and Tajimi. This function of spectral concentration corresponds to that of a filtered white vibration [bib2].

One gives the three parameters of the spectral concentration of the model of KANAI_TAJIMI: damping, frequency and level.

3.3.1 **Operands NUME_ORDRE_I, NUME_ORDRE_J**

NUME_ORDRE_I = I
NUME_ORDRE_J = J
Couples indices (line, column) of the matrix interspectrale. Not having model of spectral coherence, the model of Kanai-Tajimi only makes it possible to create auto--spectra. It is thus necessary to choose \(I = J \) (in general, one will choose \(n=1 \) and \(i=j=1 \) here).

These operands are excluded with the operands \(\text{NOEUD}_I \ \text{NOEUD}_J \ \text{NOM_CMP}_I \ \text{NOM_CMP}_J \).

3.3.2 Operands \(\text{NOEUD}_I, \ \text{NOEUD}_J, \ \text{NOM_CMP}_I, \ \text{NOM_CMP}_J \)

\[
\begin{align*}
\text{NOEUD}_I & = \text{nd}_i \quad \text{[node]} \\
\text{NOEUD}_J & = \text{nd}_j \quad \text{[node]} \\
\text{NOM_CMP}_I & = \text{ncmp}_i \quad \text{[KN]} \\
\text{NOM_CMP}_J & = \text{ncmp}_j \quad \text{[KN]}
\end{align*}
\]

These operands correspond to the names of the nodes and the components (line, column) of the matrix where one will affect a function. In the case of the model of Kanai-Tajimi, one chooses \(\text{NOEUD}_I = \text{NOEUD}_J \) and \(\text{NOM_CMP}_I = \text{NOM_CMP}_J \).

These operands are excluded with the operands \(\text{NUME_ORDRE}_I \ \text{NUME_ORDRE}_J \).

3.3.3 Operands \(\text{AMOR_REDUIT/FREQ_MOY/VALE_R/VALE_C} \)

◊ \(\text{AMOR_REDUIT} = \text{amor} \)
◊ \(\text{FREQ_MOY} = \text{fmoy} \)
◊ / \(\text{VALE_R} = \text{valr} \)
◊ / \(\text{VALE_C} = \text{valc} \)

\(\text{fmoy} \) and \(\text{amor} \) are the Eigen frequency and the reduced damping of the filter. The level can be given in the complex or real form.

3.3.4 Operands \(\text{INTERPOL/PROL_GAUCHE/PROL_DROITE} \)

One gives for each function the classical parameters which condition the interpolation and the extrapolation of the produced function. The possibilities as well as the values by default are recalled on page 2.

◊ \(\text{Interpol} \)
◊ \(\text{PROL_GAUCHE} \)
◊ \(\text{PROL_DROITE} \)

For more details to see them [§3.4] and [§3.5].

3.3.5 Operands \(\text{FREQ_MIN/FREQ_MAX/PAS} \)

One gives the parameters of the frequential discretization.

◊ \(\text{FREQ_MIN} = \text{fmin} \)
◊ \(\text{FREQ_MAX} = \text{fmax} \)
◊ \(\text{NOT} = \text{not} \)

3.3.6 Operands \(\text{PROL_DROITE} \) and \(\text{PROL_GAUCHE} \)

◊ \(\text{PROL_DROITE} \) and \(\text{PROL_GAUCHE} \) =

Define the type of prolongation on the right (on the left) of the field of definition of the variable:

- ‘\(\text{CONSTANT} \)’ for a prolongation with the last (or first) value of the function,
- ‘\(\text{LINEAR} \)’ for a prolongation along the first definite segment (\(\text{PROL_GAUCHE} \)) or of the last definite segment (\(\text{PROL_DROITE} \)),

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
• ‘EXCLUDED’ if the extrapolation of the values apart from the field of definition of the parameter is prohibited (in this case if a calculation requires a value of the function out of field of definition, the code will stop in fatal error).

For example:

• PROL_DROITE = ‘CONSTANT’, PROL_GAUCHE = ‘CONSTANT’

• PROL_DROITE = ‘LINEAR’, PROL_GAUCHE = ‘EXCLUDED’

Note:

The type of prolongation and interpolation are independent one of the other.

3.3.7 Operand Interpol

Interpol =

Type of interpolation of the function enters the values of the field of definition of the function: a type for the interpolation of the parameter and for the interpolation of the function. This is obtained by providing a list of texts among:

INTERPOL = (‘FLAX’, ‘LOG’)

‘FLAX’ linear,

‘LOG’ logarithmic curve,

‘NOT’ one does not interpolate (and thus the program will stop if one asks for the value of the function for a value of the parameter where it was not defined).

Note:

If only one value is specified, she is taken into account at the same time by the interpolation of the parameter and the function. INTERPOL = ‘LOG’ is equivalent to (‘LOG’, ‘LOG’).
3.4 **Keyword CONSTANT**

\[
\text{CONSTANT} =
\]

Keyword factor which allows to define a function of spectral concentration corresponding to a white vibration with band (constant spectral concentration on the waveband considered).

All the keywords under this keyword factor have the same direction as for the keyword factor \text{KANAI_TAJIMI} except \text{AMOR} and \text{FREQ_MOY} who do not have a direction here.

3.5 **Operand TITLE**

\[
\text{TITLE} = \text{title}
\]

title is the title of calculation to be printed at the top of the results. See [U4.03.01].

3.6 **Operand INFORMATION**

\[
\text{INFORMATION} =
\]

1: pas d’impression.

2: impression of the characteristics of the definite matrix interspectrale.

4 **Example**

In the example below one defines a function of spectral concentration (in terms of interspectre it is about a matrix 1 X 1) with constant value:

\[
\text{INTEREXC} = \text{DEFI_INTE_SPEC} (\text{DIMENSION}=1, \text{INFO}=2, \text{CONSTANT}=_F (\text{NUME_ORDRE_I}=1, \text{NUME_ORDRE_J}=1, \text{FREQ_MIN}=0., \text{FREQ_MAX}=100., \text{PAS}=1., \text{PROL_GAUCHE}='\text{CONSTANT}', \text{PROL_DROITE}='\text{CONSTANT}', \text{INTERPOL}='\text{LIN}', \text{VALE_C}= ('\text{IH}', 1., 0.),));
\]
To define the interspectre of a white vibration filtered by an oscillator represented by the filter of KANAI - TAJIMI:

```
INTKTJ1 = DEFI_INTE_SPEC ( 
    DIMENSION=1, 
    INFO=2, 
    KANAI_TAJIMI=_F ( 
        NUME_ORDRE_I=1, 
        NUME_ORDRE_J=1, 
        FREQ_MOY=15., 
        AMOR=0.05, 
        VALE_R=1., 
        INTERPOL='LIN', 
        PROL_GAUCHE='CONSTANT', 
        PROL_DROITE='CONSTANT', 
        FREQ_MIN=0., 
        FREQ_MAX=30., 
        PAS=5., 
    ),
); 
```

The 3 parameters of the filter were given:
1) damping = 0.05,
2) frequency = 15. Hz,
3) level = 1.
5 Bibliography

1) J.S. BENDAT, J. WILEGSON: “Spectral engineering application of correlation and analysis”.

2) C. DUVAL “Dynamic response under random excitations in Code_Aster: theoretical principles and examples of use”. Note DER HP-61/92-148