Operator **AFFE_CHAR_ACOU**

1 **Goal**

To affect boundary conditions acoustic constant. The affected values do not depend on any parameter and are complex values.

Product a structure of data of the type `char_acou`.
2 Syntax

CH [char_acou] = AFFE_CHAR_ACOU

 (♦ MODEL = Mo [model]
 ♦ | PRES_IMPO = F (♦ | ALL = ‘YES’
 | | GROUP_NO = lgno [l_gr_noeud]
 | | GROUP_MA = lgma [l_gr_maille]
 ◊ SANS_GROUP_NO = lgno 1 [l_gr_noeud]
 ◊ SANS_GROUP_MA = lgma 1 [l_gr_maille]
 ♦ NEAR = pre C
)

 | VITE_FACE = _F (♦ / ALL = ‘YES’
 / GROUP_MA = lgma [l_gr_maille]
 ♦ VNOR = vn C
)

 | IMPE_FACE = _F (♦ / ALL = ‘YES’
 / GROUP_MA = lgma [l_gr_maille]
 ♦ IMPE = Z C
)

 | LIAISON_UNIF= _F (♦ / GROUP_NO = lgno [l_gr_noeud]
 / GROUP_MA = lgma [l_gr_maille]
 ♦ DDL = ‘CLOSE’
)
3 Operands

3.1 Operand MODEL

◊ MODEL = Mo

Name of the model whose grid supports the elements of acoustic calculation.

3.2 Keywords PRES_IMPO / VITE_FACE / IMPE_FACE

3.2.1 Goal

Keywords factors giving it natural of the conditions imposed on the specified elements (nodes or meshes).

◊ | PRES_IMPO
 Allows to impose the degree of freedom of pressure.

 | VITE_FACE
 Allows to specify the field speed vibratory imposed in loading on elements of border.

 | IMPE_FACE
 Allows to specify the map of impedance imposed in boundary condition on elements of border.

3.2.2 Operands ALL / GROUP_NO / GROUP_MA / SANS_GROUP_NO / SANS_GROUP_MA

Declaration of the topological entities to which the loadings are applied, boundary conditions.

Those are imposed on the nodes or meshes given by the keywords ALL, GROUP_MA, GROUP_NO Tout while possibly excluding thanks to the keywords SANS_*.

Attention keywords SANS_ * are available only for the keyword PRES_IMPO.

3.2.3 Operands NEAR / VNOR / IMPE

CLOSE = pre
Value (complex) of the degree of acoustic freedom of pressure (only degree of freedom in acoustic modeling) imposed on the specified nodes.

VNOR = vn
Value (complex) of the component on the normal external with the meshes specified, the vibratory speed of the fluid.

IMPE = Z
Value (complex) of the acoustic impedance imposed on the meshes specified.

3.3 Keyword LIAISON_UNIF

3.3.1 Goal
Keyword factor allowing to impose the same value (unknown) on degrees of freedom of a set of nodes.

3.3.2 Operands GROUP_MA / GROUP_NO

These operands make it possible to define a list of n nodes N_i from which one eliminated the redundancies (for GROUP_MA, it is connectivities of the meshes).

3.3.3 DDL

This operand can be worth in acoustic modeling, only the text ‘CLOSE’, defining the only degree of freedom allowed, the acoustic pressure p.

The resulting imposed conditions are:

$$p(N_1) = p(N_i) \text{ for } i \in \{2, ..., n\}$$

4 Example

```plaintext
cha = AFFE_CHAR_ACOU (MODEL = Mo,
    VITE_FACE = _F (GROUP_MA = Gm4,
        VNOR = (‘IH’, 0.0135, 0.)),
    IMPE_FACE = _F (GROUP_MA = Gm5,
        IMPE = (‘IH’, 442., 0.)))
```

Note:

The complex values are provided under one of the two forms IH (real part, imaginary part) or MP (module, phase in degrees).