Operator CALC_MODE_ROTATION

1 Goal

To calculate the modes and the frequencies of the system following according to the number of revolutions,

\[M \ddot{\delta} + (C + \Omega G) \dot{\delta} + K \delta = 0 \]

Where \(M \) is the matrix of mass of the system, \(C \) is a matrix of damping, \(G \) is the matrix of gyroscopy (antisymmetric), and \(K \) is the matrix of stiffness of the system. \(\Omega \) represent the number of revolutions.

The data necessary for this macro are:
1) matrices: \(K, C, G \) and \(M \)
2) A list number of revolutions

This operator returns a list of concept mode_meca_c: a concept for each number of revolutions. She calls on the order CALC_MODES.
2 Syntax

```
CALC_MODE_ROTATION (

# Matrix of rigidity
   ♦ MATR_RIGI = K [matr_asse_depl_r]

# Matrix masses
   ♦ MATR_MASS= M [matr_asse_depl_r]

# Matrix damping
   ♦ MATR_AMOR = C [matr_asse_depl_r]

# Gyroscopic matrix
   ♦ MATR_GYRO = G [matr_asse_depl_r]

# List number of revolutions
   ♦ VITE_ROTA = List [R]

# Choice of the method
   ♦ METHOD = / ‘QZ’ [DEFECT]
   ♦          / ‘SORENSEN’

# Type of modal calculation
   ◊ CALC_FREQ = _F (  
      ◊ OPTION = / ‘CENTER’
      ◊          / ‘PLUS PETITE’ [DEFECT]
      ◊ NMAX_FREQ = nbF [I]
      ◊ SEUIL_FREQ= /1.E-2 [DEFECT]
      ◊          /f_seuil [R]
   )

# For final checks
   ◊ VERI_MODE = _F (  
      ◊ STOP_ERREUR = / ‘YES’ [DEFECT]
      ◊          / ‘NOT’
      ◊ THRESHOLD = / 1.E-6 [DEFECT]
      ◊          / R [R]
      ◊ PREC_SHIFT = / 0.05 [DEFECT]
      ◊          / prs [R]
      ◊ STURM = / ‘YES’ [DEFECT]
      ◊          / ‘NOT’
   )
```

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3 Operands

3.1 Operands

\[
\text{MATR_RIGI/MATR_MASS/}
\]
\[
\text{MATR_AMOR/MATR_GYRO/INFORMATION/METHOD/OPTION}
\]

They have the same meaning as in the order \text{CALC_MODES} [U4.52.02].

Note:

Because of presence of the matrices of damping and gyroscopy, only methods \text{QZ} and \text{SORENSEN} are usable.

3.2 Keyword \text{CALC_FREQ}

Play the same part as in the order \text{CALC_MODES} [U4.52.02], has the same internal keywords with the same values by default.

Note:

The number of modes \(nbF \) is the same one for all the number of revolutions.

3.3 Operand \text{VITE_ROTA}

List number of revolutions \(\Omega \) in \(\text{rad/s} \).

3.4 Operand Keyword \text{VERI_MODE}

The internal operands have the same meaning as in of the same keyword name of order \text{CALC_MODES} [U4.52.02].

4 Example

```python
# Calculation of the first 5 modes in rotation by using the method \text{QZ}:

Lmod=CALC_MODE_ROTATIONR (MATR_RIGI = RIGIDITY,
                         MATR_MASS = MASS,
                         MATR_AMOR=AMOR,
                         MATR_GYRO =GYASS,
                         VITE_ROTA=L_VITROT,
                         METHOD = 'QZ',
                         CALC_FREQ=_F (OPTION=' PLUS_PETITE', NMAX_FREQ=5),
                         VERI_MODE=_F (STOP_ERREUR=' NON'));
```

\text{CALC_MODE_ROTATION} return a table (table_contenor) containing the modal bases calculated for each number of revolutions.

\text{mode_meca_c product are named as follows: mod_0,… mod_i. .mod_nbV, i} is the index number of revolutions in \text{VITE_ROTA}.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)