Date: 29/06/2015 Page: 1/5

Révision 2c8ef901cd6c

Titre: SDNL301 - Vibration d'une poutre avec impact multi[...]

Responsable : ALARCON Albert Clé : V5.02.301

SDNL301 – Vibration of a beam with impact multipoint

Summary:

The objective of this CAS-test is to simulate the dynamic response with damping of a beam with impact-multipoints:

- The beam is subjected has sinusoidal requests.
- The impacts (obstacles) have a normal rigidity and a normal damping.
- Only one modeling POU D T is carried out

One determines value RMS of the normal force at the loose lead with or without taking into account of the static modes.

Date: 29/06/2015 Page: 2/5 Révision Responsable: ALARCON Albert Clé: V5.02.301

2c8ef901cd6c

Problem of reference

1.1 Geometry

Figure 1.1 Geometry of the problem and system of loading

Geometry of the beam (m):

L = 2.436

R = 0.00795

r = 0.00680

Properties of material 1.2

Beam

E=2.07 E11 Pa	Young modulus
v=0.3	Poisson's ratio
$\rho = 7870.0 kg.m^{-3}$	Density
$AMOR_ALPHA = 1.79E - 5 N.s.m^{-1}$	
$AMOR_BETA = 0.1526 N.kg^{-1}$	

Coefficients α and β allow to build a matrix of viscous damping proportional to rigidity and the mass $[C] = \alpha[K] + \beta[M]$

Obstacles

$RIGI_NOR = 1.0E5 N.m^{-1}$	normal coefficient of rigidity
$AMOR_NOR = 0.28 N.m.s^{-1}$	normal damping coefficient

Date: 29/06/2015 Page: 3/5 Clé: V5.02.301 Responsable: ALARCON Albert

Révision 2c8ef901cd6c

1.3 **Boundary conditions and loadings**

Imposed displacement:

All the nodes of the beam:	DZ=0 , $DRY=0$, $DRX=0$
Node NI :	DX=0 , $DY=0$, $DRZ=0$

Imposed loading (N):

Nodes N37	N3	with	N13	and	N27	with	$FORCEP = 4.138 \sin(\omega t)$
Nodes N49	N5	with	N25	and	N39	with	$FORCEM = -4.138 \sin(\omega t)$

with $\omega = 251.2 \, rad.s^{-1} (40 \, Hz)$

Obstacles located in the plan Y according to the direction y:

N14	Game = $0.406E - 3 m$	origin = $(0.609, 0.0, 0.0)$
N26	Game = $0.406E - 3 m$	origin = $(1.218,0.0,0.0)$
N38	Game = $0.406E - 3 m$	origin = $(1.827,0.0,0.0)$
N2	Game = $0.406E - 3 m$	origin = $(2.436,0.0,0.0)$

Reference solution

2.1 Size and result of reference

One tests the value of RMS in not-regression, over total time normal force at the loose lead of the beam.

Two types of analyses were carried out:

- First analysis to consist in calculating the transitory dynamic response on a modal basis made up by the first 30 clean modes.
- Second analysis to consist in calculating the transitory dynamic response on a modal basis made up by the first 30 clean modes to which one adds the static modes.

The procedure of calculation is following:

- one calculates the first 30 Eigen frequencies (until 4800Hz) and associated clean modes,
- one projects on the modal basis the matrices of rigidity, mass and damping,
- one projects on the modal basis the efforts.
- one calculates the transitory dynamic response on the modal basis
- one calculates the RMS over the total time of the normal force to the node N2

One thus does not have a value of reference RMS for this problem one has the two results independently.

2.2 Reference variable

RMS T TOTAL: value RMS over the total time of the normal force (FORCE NORMALE) with the node N2.

Date: 29/06/2015 Page: 4/5 Responsable: ALARCON Albert Clé: V5.02.301 Révision

2c8ef901cd6c

Modeling A 3

3.1 Characteristics of modeling A

Figure 3.1. Grid of modeling A

Modeling POU D T :

Many nodes 49

Many meshs 48 That

is to say:

> SEG2 48

Group of meshs

GM1: together meshs of the type <code>SEG2</code> who compose the beam

3.2 Sizes tested and results

For the first analysis of modeling, by considering the transitory dynamic response on a modal basis only made up of the first 30 clean modes, one obtains a value of *RMS* as follows:

Size	Component	Node	Computed value
FORCE_NORMALE	RMS_T_TOTAL	N2	23.98

For the second analysis, by considering the static correction for the modal base, one obtains a value of RMS slightly different and certainly nearer to reality taking into account the improvement the modal base:

Responsable : ALARCON Albert

Date : 29/06/2015 Page : 5/5 Clé : V5.02.301 Révision

2c8ef901cd6c

Size	Component	Node	Computed value
FORCE_NORMALE	RMS_T_TOTAL	N2	24.538

4 Summary of the results

The got results confirms the influence of the static correction of a modal base on the results. One notes a variation of 3.66% between values RMS over the total time of the normal force with and without without taking into account of the static modes.