

Titre : SSNL123 - Flambement d'une poutre Multi-Fibres Responsable : FLÉJOU Jean-Luc
 default

 Date : 27/03/2013
 Page : 1/4

 Clé : V6.02.123
 Révision : 1089978e354b

Version

SSNL123 - Buckling of a beam Multifibre

Summary:

This test relates to the validation of the buckling of a beam multifibre with a model POU_D_TGM. This problem makes it possible to test:

- linear finite elements of beams type with a model POU D TGM,
- · the taking into account of the orientation,
- the calculation of the first modes of buckling.

Code_Aster

Titre : SSNL123 - Flambement d'une poutre Multi-Fibres Responsable : FLÉJOU Jean-Luc Date : 27/03/2013 Page : 2/4 Clé : V6.02.123 Révision f089978e354b

1 Problem of reference

1.1 Geometry

Length of the bar: 3mArticulated in ASimply supported in BForces in B Section of the bar: height: 0.04m width: 0.02m

1.2 Properties of material

Material for the linear element: Elasticity: E = 2.1E + 11 Pa

1.3 Conditions with the loadings

At the point A : blocking of the degrees of freedom: dx, dy, dz, DRXAt the point B : blocking of the degrees of freedom : dx, dy, dz, DRXLoading at the point B : = (F_x , 0, 0).

2 Reference solution

2.1 Sizes and results of reference

For an bi--articulated beam, the theory of the buckling of Euler gives as solution:

 $Ncd = n^2 \cdot \frac{\pi^2 EI}{L^2}$ where *n* is the number of the mode.

Version default

Code_Aster

Titre : SSNL123 - Flambement d'une poutre Multi-Fibres Responsable : FLÉJOU Jean-Luc Version

3 Modeling A

3.1 Characteristics of modeling and the grid

Mechanical characteristics of the section (homogeneous units to meters)

3.2 Sizes tested and results

The sizes tested and analyzed are the first values of the loads of buckling in the 2 directions.

	Values Theoretical	Tolerance (%)
1st Mode/ I_z	5757.3N	0.2
1st Mode/ I_y	24180.5 NR	0.2
2nd Mode/ I _z	23029.1 NR	0.2
3rd Mode/ I _z	51815.4 NR	0.2
2nd Mode/ I_y	96722.1 NR	0.2
4th Mode/ I	92116.3 NR	0.7

The moments of calculation 1 and 2 give the same results. The calculation of the vector of prestressed after STAT NON LINE be thus carried out in a correct way.

Code_Aster

Titre : SSNL123 - Flambement d'une poutre Multi-Fibres Responsable : FLÉJOU Jean-Luc Date : 27/03/2013 Page : 4/4 Clé : V6.02.123 Révision f089978e354b

Version

default

4 Summary of the results

This case test shows the good performance of a modeling of the behavior of the beams by an approach multifibre. A loop, carried out with the language python, makes it possible to recover information with the various steps of time.

- The calculation of the matrix of rigidity, option RIGI_MECA, is realized from one AFFE_CHAR_MECA_F.
- The calculation of the vector of the internal efforts is carried out by one CREA_CHAMP from one STAT_NON_LINE by recovering them SIEF_ELGA.