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SSNV231 – Sphere digs under internal pressure in 
great deformations

Summary:

The objective  of  this test is to validate the various incompressible formulations in great deformations. The
advantage of  this case test is that one has an analytical  solution.  Five  modelings are used to validate the
formulations whatever the type of finite element:

Modeling a: quadratic 3D grid HEXA20 (INCO_UPG, INCO_UP)
Modeling b: quadratic 3D grid TETRA10 (INCO_UPG, INCO_UP)
Modeling C: quadratic 3D grid PENTA15 (INCO_UPG, INCO_UP)
Modeling D: Quadratic AXIS grid QUAD8 (INCO_UPG, INCO_UP)
Modeling E: Quadratic AXIS grid TRIA6 (INCO_UPG, INCO_UP)
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1 Problem of reference

1.1 Geometry

One considers a hollow sphere of external ray 1m  and of internal ray 0.2m .

 

Figure 1.1-a : Cut of the studied sphere

1.2 Properties of material

The material  has a perfectly  plastic elastoplastic behavior.  Its surface of  load east defines by the
criterion of von Mises. The properties materials are:

• E=200000MPa  
• =0.3  

•  y=150MPa  

1.3 Boundary conditions and loadings

One applies an internal pressure until reaching the whole plasticization of the sphere. External surface
is free of effort.

1.4 Initial conditions

Nothing
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2 Reference solution

2.1 Method of calculating

In what follows, all the sizes defined in the initial configuration will be written in capital letters. The sizes defined
in the deformed configuration will be written in small letters.
To establish the analytical  solution,  one considers a sphere of  initial  rays interior  A  and outside  B .  The
material is elastoplastic with perfect plasticity. The plastic flow normal and is associated with the criterion of von
Mises, of elastic limit   y . Elasticity isotropic is defined by the modules of compressibility and shearing,  K
and  . The sphere is subjected to an internal pressure P .
Being given the spherical  symmetry of  the geometry and loading,  one seeks a solution which presents the
same properties of invariance what excludes the research solution forked. The solution depends only on the
distance to the center of the noted sphere R  in the initial configuration and r  in the deformed configuration.

Displacement is purely radial: u r =u r er , where e r ,e
,e

  is the orthonormal base associated with the

spherical frame of reference. The definition of the operators will  thus be used grad ,  div ,… adequate. The
tensor of the constraints is expressed in the following way:

= rr r er⊗er r e⊗ee⊗e  (1)

Concerning displacement, its expression in the configuration of reference is: u  X =U  r er . One can notice
that, by definition, one has the relations:

r=RU R  and u r =U R

One from of deduced the following formula for the derivative 

∂U
∂R

=
∂u
∂ r

∂r
∂R

=
∂ u
∂ r 1

∂U
∂R ⇒ ∂U

∂R
=

∂u
∂ r

1−∂ u
∂ r 

 (2)

The gradient of the transformation is calculated:

F=1∂U
∂R e r⊗e r1UR e

⊗ee
⊗e

  (3)

Note:
F  admits constant clean directions during the transformation.

The deformation logarithmic curve admits then simply like expression:

E=ln 1∂U
∂R e r⊗e rln1UR e

⊗ee
⊗e

  (4)

Note:
In this case, typical case the rate of deformation Ė  coincide with the rate of Eulérien deformation D , so that
the tensor of  constraint  T  associated with the deformations logarithmic  curves is equal to the content  of
Kirchhoff  . It is a favorable situation to display an analytical solution.
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In the deformed configuration, the deformation e x=E  X   express yourself:

e=−ln1−∂ u
∂ r er⊗er ln r−ln  r−u   e

⊗ee
⊗e

  (5)

It is also useful to express Jacobien of the transformation and its logarithm in the deformed configuration:

j=det F=
1

1−∂u
∂ r 

 r
r−u 

2

 and ln j=−ln 1−
∂ u
∂r

2 ln r−2 ln  r−u=tr e (6)

The equilibrium  equations can be also expressed in the configuration deformed according to the tensor of
Kirchhoff = j  :

div x  j =0⇔
∂ rr
∂r

−rr
∂ ln j
∂ r


2
r
 rr−


=0  (7)

Moreover, one has the boundary conditions:

 rr b=0  and  rr a= j aP (8)

Where  a  and  b  are  the  rays  interior  and  outside  of  the  deformed  sphere.  Account  held  of  spherical
symmetry, it is equivalent to impose an internal pressure or a radial displacement on the interior skin. One will
prefer to control calculation in displacement, so that the second boundary condition is replaced by:

u a=U imp  (9)

As regards the behavior, the hydrostatic part is purely elastic:

tr =3K tr e⇔3K ln j=rr2  (10)

For the deviatoric part, there are the relations classic of the plasticity of von Mises:

eq≤ y ; ṗ≥0 ; ṗ eq− y =0  (11)


D
=2 eDe p  and ė p=

3
2
ṗ


D

eq
 (12)

As regards answer of the structure, one expects a scenario in which the plastic zone gradually develops interior
towards the outside of the sphere. When it reaches the external wall, all the points of the sphere are in plastic
mode is:

eq= y⇔−rr= y  (13)

Moreover, at the time when the external wall is reached, the plastic deformation is still  worthless there. One
thus has:
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eDb=
1
2


D
b⇔

 rr b −


b

2
=ln 1−

∂u
∂ r

r−u ∣
b

ln b
 (14)

    

When the plastic zone leads to the external wall, one of the two components of the tensor of the constraint is
known in any point via (13). The relation of balance (7) as well as the spherical part of the behavior (10) then
make it  possible  to  entirely  determine  the stress field,  as well  as Jacobien of  the transformation.  In fact,
contrary to the case of the small deformations, these two equations are coupled. They are written:

{
∂rr
∂ r

−rr
∂ ln j
∂ r


2
r
 rr−


=0

3K ln j= rr2

 (15)

In substituent the definition of ln j  in the first equation of (15), one obtains:

∂
∂r rr−  rr

2

2K =2r  y
 (16)

This equation is integrated easily by taking of account the boundary condition (8)

 rr−
 rr
2

2K
=2 y ln rb   (17)

The stress field can be deduced by solving this equation from the second order. The choice of the root is fixed
by the fact that it is about a compressive stress, therefore negative. The field of change of volume ln j  from
of deduced then through (15):

{  rr r =K−K 2
−4K y ln rb 

ln j r =1−1−4  y

K
ln  rb 

2 y

3K

 (18)

In addition, the kinematic relation (6) can be rewritten:

∂
∂r

r−u 3 = 3 r2

exp ln j
 (19)

By taking of account the definition b−u b=B , one from of deduced by integration:

r−u3=B2−∫r

b 32

exp ln j 
d   (20)

The primitive in (20) will have to be calculated numerically.
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One can be also based on the relation (19) to simply express the ray deformed in  b . Indeed, in  r=b , the
change of volume is worth:

ln jb=
2 y

3K
 (21)

    
The equation (19) is written in r=b  :
 

1−∂ u
∂r = b

2

B2
exp −2 y

3K   (22)

The condition of continuity (14)  then allows to fix the ray of the deformed sphere because it is still expressed:

1−∂ u
∂r = bB 

−1

exp   y

2   (23)

From (22) and (23), one deduces the external ray deformation:

b
B

=exp  y

3  12 
2
3K   (24)

The knowledge of the strain and the stress makes it  possible to determine in its turn the field of cumulated
plastic  deformation  p ,  Indeed, its evolution is controlled by the tensorial  equation (12).  More precisely, it

proves  that  the direction  
D
/eq  is  constant  what  makes it  possible  to  integrate  the plastic  deformation

simply:

e p= pe r⊗e r−
1
2

e
⊗e

−
1
2
e

⊗e   (25)

Then in substituent this expression in the first equation of (12), one from of deduced:

p r =
2
3
e−err −

 y

3
=
2
3 ln r−  y

2
ln

1−
∂u
∂ r

r−u   (26)

Where the expression of the field of displacement is henceforth known according to (20).
Finally, the interior boundary condition makes it possible to determine the critical level of loading for which the
plastic  zone reaches the external  wall.  Indeed, the interior ray défomée is given  in an implicit  way by the
relation (20) precisely expressed in r=a  :

∫r

b 32

exp ln j 
d =B3−A3  (27)

2.2 Sizes and results of reference

The reference variables are the trace of the constraint and the plastic deformation cumulated in configuration
deformed for the points of Gauss having the R smallest and largest. 
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2.3 Uncertainties on the solution

The solution being analytical, there is not uncertainty.

2.4 Bibliographical references

1 E.  LORENTZ,  “Dualisation of  the conditions of  quasi-incompressibility”,  Document  interns
EDF R & D, 2011.  
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3 Modeling A

3.1 Characteristics of modeling

One takes advantage of symmetries of the problem to model only one eighth of the sphere.

 

Three modelings are tested: 3D_INCO_UPG (SIMO_MIEHE and GDEF_LOG) and 3D_INCO_UP

3.2 Characteristics of the grid

The grid of 246 nodes contains 30 elements of the type HEXA20.

3.3 Sizes tested and results

One tests the trace of  the constraints and the plastic  deformation cumulated for  the points of  the
excentré Gauss and excentré.

MODELISATION=' 3D_INCO_UPG' and DEFORMATION=' SIMO_MIEHE'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1039159346.8 0.3%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 280042736.64 2%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.13857481948 30%

Not the excentré Gauss
- p

‘ANALYTICAL’ 7.5327100205e-5 45%

MODELISATION=' 3D_INCO_UPG' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1039075543.3 0.3%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 280042663.38 2%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.13853470251 30%

Not the excentré Gauss ‘ANALYTICAL’ 7.5327415674e-5 45%
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- p
     
MODELISATION=' 3D_INCO_UP' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1039075544 0.3%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 280042663.37 2%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.13853470247 30%

Not the excentré Gauss
- p

‘ANALYTICAL’ 7.5327415705e-5 45%

3.4 Remarks

All the incompressible formulations give good performances. One can see on Figure 3.4-a that one
does  not  have  any  more  oscillations  on  the  value  of  the  trace  of  the  constraints  with  the
incompressible formulations contrary to the standard elements 3D.

 

Figure 3.4-a : trace of the constraints in Mpa  for the formulations 3D, 3D_INCO and the analytical
solution

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is
provided as a convenience.
Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : SSNV231 – Sphère creuse sous pression interne en g[...] Date : 25/02/2014 Page : 10/18
Responsable : FAYOLLE Sébastien Clé : V6.04.231 Révision  :

d6de8d1978cf

4 Modeling B

4.1 Characteristics of modeling

One takes advantage of symmetries of the problem to model only one eighth of the sphere.

 
Three modelings are tested: 3D_INCO_UPG (SIMO_MIEHE and GDEF_LOG) and 3D_INCO_UP

4.2 Characteristics of the grid

The grid of 958 nodes contains 535 elements of the type TETRA10.

4.3 Sizes tested and results
One tests the trace of  the constraints and the plastic  deformation cumulated for  the points of  the
excentré Gauss and excentré.

MODELISATION=' 3D_INCO_UPG' and DEFORMATION=' SIMO_MIEHE'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1054911623.9 0.9%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 282824382.06 0.4%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.10271480980 23%

Not the excentré Gauss
- p

‘ANALYTICAL’ 6.3610302176e-5 7.5%

MODELISATION=' 3D_INCO_UPG' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1055244775.5 0.9%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 282824564.66 0.4%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.10283960537 23%

Not the excentré Gauss ‘ANALYTICAL’ 6.3609549443e-5 7.5%

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is
provided as a convenience.
Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : SSNV231 – Sphère creuse sous pression interne en g[...] Date : 25/02/2014 Page : 11/18
Responsable : FAYOLLE Sébastien Clé : V6.04.231 Révision  :

d6de8d1978cf

- p

MODELISATION=' 3D_INCO_UP' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1055244775.5 0.9%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 282824564.66 0.4%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.10283960537 23%

Not the excentré Gauss
- p

‘ANALYTICAL’ 6.3609549443e-5 7.5%

4.4 Remarks

All the incompressible formulations give good performances. One can see on Figure a that one does
not have any more oscillations on the value of the trace of the constraints with the incompressible
formulations contrary to the standard elements 3D.

 

Figure a : Trace of the constraints in Mpa  for the formulations 3D, 3D_INCO and the analytical
solution
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5 Modeling C

5.1 Characteristics of modeling

One takes advantage of symmetries of the problem to model only one eighth of the sphere.

 
Three modelings are tested: 3D_INCO_UPG (SIMO_MIEHE and GDEF_LOG) and 3D_INCO_UP

5.2 Characteristics of the grid

The grid of 279 nodes contains 60 elements of the type PENTA15.

5.3 Sizes tested and results
One tests the trace of  the constraints and the plastic  deformation cumulated for  the points of  the
excentré Gauss and excentré.

MODELISATION=' 3D_INCO_UPG' and DEFORMATION=' SIMO_MIEHE'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1069165300.4 1%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 293654077.71 1%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.1205244945 17%

Not the excentré Gauss
- p

‘ANALYTICAL’ 2.1945807187e-5 1E-5%

MODELISATION=' 3D_INCO_UPG' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1069097464.2 1%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 293654247.5 1%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.12049702407 17%

Not the excentré Gauss
- p

‘ANALYTICAL’ 2.1945190693e-5 1E-5%
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MODELISATION=' 3D_INCO_UP' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1069097462.2 1%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 293654247.46 1%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.12049702379 17%

Not the excentré Gauss
- p

‘ANALYTICAL’ 2.1945190811e-5 1E-5%

5.4 Remarks

All the incompressible formulations give good performances. One can see on Figure 5.4-a that one
does  not  have  any  more  oscillations  on  the  value  of  the  trace  of  the  constraints  with  the
incompressible formulations contrary to the standard elements 3D.

 

Figure 5.4-a : Trace of the constraints in Mpa  for the formulations 3D, 3D_INCO and the analytical
solution
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6 Modeling D

6.1 Characteristics of modeling

One takes advantage of symmetries of the problem to model only one eighth of the sphere.

 
Three modelings are tested: AXIS_INCO_UPG (SIMO_MIEHE and GDEF_LOG) and AXIS_INCO_UP

6.2 Characteristics of the grid

The grid of 341 nodes contains 100 elements of the type QUAD8.

6.3 Sizes tested and results
One tests the trace of  the constraints and the plastic  deformation cumulated for  the points of  the
excentré Gauss and excentré.

MODELISATION=' AXIS_INCO_UPG' and DEFORMATION=' SIMO_MIEHE'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1034318375.2 0.2%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 284142728.1 0.2%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.13814566168 32%

Not the excentré Gauss
- p

‘ANALYTICAL’ 5.8228400148e-5 46%

MODELISATION=' AXIS_INCO_UPG' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1034277396.8 0.2%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 284142845.29 0.2%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.13812431142 32%

Not the excentré Gauss
- p

‘ANALYTICAL’ 5.8227926343e-5 46%
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MODELISATION=' AXIS_INCO_UP' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1034277398.8 0.2%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 284142845.27 0.2%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.13812431254 32%

Not the excentré Gauss
- p

‘ANALYTICAL’ 5.8227926392e-5 46%

6.4 Remarks

All the incompressible formulations give good performances. One can see on Figure 6.4-a that one
does  not  have  any  more  oscillations  on  the  value  of  the  trace  of  the  constraints  with  the
incompressible formulations contrary to the standard elements AXIS.

 

Figure 6.4-a : Trace of the constraints in Mpa  for the formulations AXIS, AXIS_INCO and the analytical
solution
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7 Modeling E

7.1 Characteristics of modeling

One takes advantage of symmetries of the problem to model only one eighth of the sphere.

 
Three modelings are tested: AXIS_INCO_UPG (SIMO_MIEHE and GDEF_LOG) and AXIS_INCO_UP

7.2 Characteristics of the grid

The grid of 441 nodes contains 200 elements of the type TRIA6.

7.3 Sizes tested and results
One tests the trace of  the constraints and the plastic  deformation cumulated for  the points of  the
excentré Gauss and excentré.

MODELISATION=' AXIS_INCO_UPG' and DEFORMATION=' SIMO_MIEHE'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1038055558.5 1.5%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 287474941.41 0.1%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.095807224561 16%

Not the excentré Gauss
- p

‘ANALYTICAL’ 4.5056636601e-5 10%

MODELISATION=' AXIS_INCO_UPG' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1036113143.5 1.5%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 287474939.50 0.1%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.096499343842 16%

Not the excentré Gauss
- p

‘ANALYTICAL’ 4.5056643994e-5 10%
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MODELISATION=' AXIS_INCO_UP' and DEFORMATION=' GDEF_LOG'

Identification Type of reference Value of reference Tolerance

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ -1036113143.5 1.5%

Not the excentré Gauss
- tr  - Pa

‘ANALYTICAL’ 287474939.50 0.1%

Not the excentré Gauss
- p

‘ANALYTICAL’ 0.096499343739 16%

Not the excentré Gauss
- p

‘ANALYTICAL’ 4.5056643999e-5 10%

7.4 Remarks

All the incompressible formulations give good performances. One can see on Figure 7.4-a that one
does  not  have  any  more  oscillations  on  the  value  of  the  trace  of  the  constraints  with  the
incompressible formulations contrary to the standard elements AXIS.

 

Figure 7.4-a : Trace of the constraints in Mpa  for the formulations AXIS, AXIS_INCO and the analytical
solution
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8 Summary of the results

The got results show that the incompressible formulations make it possible to control well the phenomena of
oscillations of the trace of the constraints in great deformations.
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