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Multifibre element of beam (right)

Summary :

This document presents the elements of multifibre beam of Code_Aster based on a resolution of a problem of
beam for which each section of a beam is divided into several fibres. Each fibre behaves then like a beam of
Euler. Several  materials can be affected on only one support finite element (SEG2) what avoids having to
duplicate the meshs (steel + concrete, for example).

The beams are right (element  POU_D_EM). The section can be of an unspecified form, described by a “fibre
grid”, to see [U4.26.01].
The assumptions selected are the following ones:
• assumption of Euler: transverse shearing is neglected (this assumption is checked for strong twinges),
• the elements of multifibre beam take into account the effects of thermal dilation, drying and the hydration

(terms of  the second member)  and in  a simplified way torsion.  The effort-normal  coupling inflection is
treated naturally, by integration in the section of the uniaxial answers of the models of behavior associated
with each group with fibres. An enrichment of the axial deformation, solved by local condensation in the
case of nonlinear behaviors, allows digital good performances, whatever the evolution in the section of the
centre of gravity matériau of the section.
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Notations

One gives the correspondence between the notations of this document and those of the documentation
of use.

DX ,DY ,DZ  and DRX ,DRY ,DRZ  are in fact the names of the degrees of freedom associated with
the components with displacement u ,v ,w ,θx , θy , θz .

E  Young modulus E  

ν  Poisson's ratio NU  

G  module of Coulomb = 
E

2.(1+ν)
G  

I y , I z  geometrical moments of inflection compared to the axes y , z IY , IZ  

J x  constant of torsion JX  

K  matrix of rigidity

M  matrix of mass

M x ,M y ,Mz  moments around the axes x , y , z MT ,MFY ,MFZ  

N  normal effort with the section N  

S  surface of the section A  

u ,v ,w  translations on the axes x , y , z DX ,DY ,DZ  

V y ,V z  efforts cutting-edges along the axes y ,z VY ,VZ  

ρ  density ρ  

θx ,θy ,θz  rotations around the axes x , y , z DRX ,DRY ,DRZ

qx , qy , qz  external linear efforts

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part
and is provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Élément de poutre multifibre (droite) Date : 17/07/2015 Page : 4/24
Responsable : FLÉJOU Jean-Luc Clé : R3.08.08 Révision  :

bb5f364fe960

1 Introduction
The analysis of the structures subjected to a dynamic loading requires models of behavior able to
represent non-linearities of material.

Many analytical models were proposed. They can be classified according to two groups:
• detailed models founded on the mechanics of the solid and their description of the local behavior
of the material (microscopic approach)
• models based on a total modeling of the behavior (macroscopic approach).

In the first type of models, we can find the models classical with the finite elements as well as “the
fibre” models type (having an element of type beam how support).

While  the  “classical” models  with  the  finite  elements  are  powerful  tools  for  the  simulation  of  the
nonlinear  behavior  of  the complex parts  of  the structures (joined,  assemblies,…),  their  application
to the totality of a structure can prove not very practical because of a prohibitory computing time or size
memory  necessary  to the  realization  of  this  calculation.  On  the  other  hand,  a  modeling  of  type
multifibre beam [Figure 1-a], has the advantages of the simplifying assumptions of a kinematics of type
beam of  Euler  -  Bernoulli  while  offering a  practical  solution  and effective  for  a  nonlinear  analysis
complexes composite elements of structures such as those which one can meet for example out of
reinforced concrete.

Moreover, this “intermediate” modeling is relatively robust and inexpensive in time calculation because
of use of nonlinear models of behavior 1D.

 
Figure 1-a  : Beam reinforced concrete with frameworks and reinforcements. 
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Figure 1-b  : Modeling of a beam reinforced concrete by a multifibre beam. 

 
Figure 1-c : Support finite element of a modeling of type multifibre beam
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2 Element of theory of the beams (recalls)
One takes again here the elements developed within the framework of the elements of beam of Euler,
[feeding-bottle 4].

A beam is a solid generated by a surface of surface S  of which the geometrical centre of inertia G
followed a curve C  called the average fibre or neutral fibre. The surface S  is the cross-section (cross
section) or profile, and it is supposed that if it is evolutionary, its evolutions (size, form) are continuous
and progressive when G  described the average line.

For the study of the beams in general, one makes the following assumptions:
• the cross-section of the beam is indeformable,
• transverse displacement is uniform on the cross-section.

These assumptions make it possible to express displacements of an unspecified point of the section,
according to displacements of the point corresponding located on the average line, and according to an
increase in displacement due to the rotation of the section around the transverse axes.

The discretization in “exact” elements of beam is carried out on a linear element with two nodes and six
degrees of freedom by nodes. These degrees of freedom are the three translations u ,v ,w  and three
rotations θx , θy , θz  [Figure 2-a].

u1

v 1

w1

θ x1

θ y1

θ z1

}
  

{
u 2

v 2

w 2

θx 2

θy 2

θz2

 

FigurE 2-a : Element beam.

Waited until the deformations are local, it is built in each top of the grid a local base depending on the
element  on which one works.  The continuity  of  the fields of  displacements is  ensured by a  basic
change, bringing back the data in the total base.

In the case of the right beams, one traditionally places the average line on axis X of the local base,
transverse displacements being thus carried out in the plan (y , z ) .

Finally when we arrange sizes related to the degrees of freedom of  an element in a vector or an
elementary matrix (thus of dimension  12  or  122 ), one arranges initially the variables for the top  1
then those of the top 2 . For each node, one stores initially the sizes related to the three translations,
then those related to three rotations. For example, a vector displacement will  be structured in the
following way:

u1 ,v 1 ,w1, θx 1
, θy 1

, θz1⏟
sommet 1

, u2 , v 2 ,w2 , θx2
, θy 2

, θz2⏟
sommet 2

 

3 Equations of the movement of the beams
We will  not  include in  this  document  all  the equations of  the movement  of  the beams.  For  more
complements concerning this part one can refer to documentation concerning the elements POU_D_E
and POU_D_T [feeding-bottle 4].
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4 Element of right beam multifibre
One describes in this chapter obtaining the elementary matrices of rigidity and mass for the element of
right beam multifibre, according to the model of Euler. The matrices of rigidity are calculated with the
options ‘RIGI_MECA’ or ‘RIGI_MECA_TANG’, and matrices of mass with the option ‘MASS_MECA’
for the coherent matrix, and the option ‘MASS_MECA_DIAG' for the matrix of diagonalized mass.

We present here a generalization [feeding-bottle 3] where the reference axis chosen for the beam is
independent of any geometrical  consideration, inertial or mechanical.  The element functions for an
unspecified section (heterogeneous is without symmetry) and is thus adapted to a nonlinear evolution
of the behavior of fibres.

One also describes the calculation of the nodal forces for the nonlinear algorithms: ‘FORC_NODA’ and
‘RAPH_MECA’.

4.1 Element beam of reference
[the Figure 4.1-a] the change of variable realized to pass from the real finite element [Figure shows
us 2-a] with the finite element of reference.

 

 
Figure 4.1-a : Element of reference vs real Élément.

One will then consider the continuous field of displacements in any point of the average line compared
to the field of displacements discretized in the following way:

U s=[N ]. {U} [éq 4.1-1]

The index s  indicate the quantities attached to average fibre.
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By  using  the  functions  of  form  of  the  element  of  reference,  the  discretization  of  the  variables
us ( x ) , vs ( x ) ,w s ( x ) ,θ sx ( x ) ,θsy (x ) , θsz ( x )  becomes:

(
us ( x )

vs ( x )

ws ( x )

θ sx ( x )

θ sy ( x )

θ sz (x )
)=(

N
1

0 0 0 0 0 N
2

0 0 0 0 0

0 N 3 0 0 0 N 4 0 N 5 0 0 0 N 6

0 0 N 3 0 −N 4 0 0 0 N 5 0 −N 6 0

0 0 0 N 1 0 0 0 0 0 N 2 0 0

0 0 −N 3, x 0 N 4, x 0 0 0 −N 5, x 0 N 6, x 0

0 N 3, x 0 0 0 N 4, x 0 N 5, x 0 0 0 N 6, x

)⋅(
u1
v1

w1
θ x 1
θ
y 1
θ z 1
u2

v2
w2

θ x 2
θ y 2

θ z 2

)  

 [éq 4.1-2]

With the following functions of interpolation, and their derivative useful:

N1=1−
x
L

; N 1,x=−
1
L

N 2=
x
L

; N2, x=
1
L

N 3=1−3 x 2

L2
+2 x3

L3
; N3, xx=−

6

L2
+12 x

L3

N 4=x−2 x2

L
+

x 3

L2
; N 4, xx=−

4
L

+6 x

L2

N 5=3
x2

L2
−2

x3

L3
; N5,xx=

6

L2
−12

x

L3

N 6=−
x 2

L
+

x 3

L2
; N 6, xx=−

2
L

+6
x

L2

[éq 4.1-3]

4.2 Determination of the matrix of rigidity of the multifibre element

4.2.1 Case general (beam of Euler)

Let  us  consider  a  beam Euler,  line,  directed  in  the  direction  x ,  subjected  to  distributed  efforts
qx , qy , qz  [Figure 4.2.1-a].

 
Figure 4.2.1-a : Beam of Euler 3D.
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The fields of  displacements and deformations take the following  shape then when one writes  the
displacement of an unspecified point of the section according to displacement  (U s)  and of rotation
θs  line of average:

u ( x , y , z)=us(x)− yθsz (x)+ z θ sy( x) [éq 4.2.1-1]
v (x ,y , z )=v s(x ) [éq 4.2.1-2]
w (x ,y , z )=w s (x ) [éq 4.2.1-3]
ε xx=ux

' ( x)− yθ sz
' ( x)+ z θsy

' ( x) [éq 4.2.1-4]
εxy=εxz=0 [éq 4.2.1-5]

Note:
Torsion is treated overall by admitting an elastic assumption, except for, one does not calculate ε yz

here. f ’ (x )  indicate the derivative of f (x )  compared to x .

By introducing the equations [éq 4.2.1-4] and [éq 4.2.1-5] in the principle of virtual work one obtains:

∫V
0
σxx . δε xx dV 0 =∫0

L

(δus (x ) q x+δvs ( x ) q y+δws ( x ) qz ) dx [éq 4.2.1-6]

qx ,q y ,qz  indicating the linear efforts applied. What gives by using the equation [éq 4.2.1-1]:

∫0

L

(N δus
' ( x )+M x δθ sx

' ( x )+M y δθsy
' (x )+M z δθ sz

' (x ) )dx

=∫0

L

(qx δus ( x )+q y δv s (x )+qz δw s (x ))dx
[éq 4.2.1-7]

with:

N=∫S
σxxdS ; M y=∫ S

zσxx dS ; M z=∫S
− yσxxdS [éq 4.2.1-8]

Note:
Torque  M x  is not calculated by integration but is not calculated directly starting from the stiffness in
torsion (see [éq  4.2.2-4 ]). 
The theory of the beams associated with an elastic material gives: σ xx=E ε xx  

4.2.2 Case of the multifibre beam

We suppose  now  that  the  section  s  is  not  homogeneous,  materials  with  different  mechanical
characteristics.
Without adopting particular assumption on the intersection of the axis x  with the section s  or on the
orientation of  the axes  Y ,Z ,  the relation between the “generalized”  constraints and deformations
“generalized” Ds becomes [bib2]:

Fs=Ks⋅Ds [éq 4.2.2-1]
with:

Fs=(N , M y , M z , M x )T

Ds=(u s
' ( x ) , θ sy

' (x ) , θ sz
' ( x ) , θ sx

' (x ))
T [éq 4.2.2-2]

The matrix K s  can then put itself in the following form:

Ks=(
K s11 K s12 K s13 0

K s 22 K s 23 0

K s33 0

sym K s44
) [éq 4.2.2-3]
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with:

K s11=∫S
EdS ; K s12=∫S

Ezds ; K s13=−∫S
Eyds

K s 22=∫S
Ez2dS ; K s23=−∫S

Eyzds ; K s33=∫S
Ey2ds

[éq 4.2.2-4]

where E  can vary according to y  and z . Indeed, it may be that in modeling section planes, several
materials cohabit. For example, in a concrete section reinforced, there are at the same time concrete
and reinforcements.
The discretization of the fibre section makes it  possible to calculate the integrals of  the equations
[éq 4.2.2-4]. The calculation of the coefficients of the matrix Ks  is detailed in the paragraph [§4.2.3]
according to.

Note:
The term of  torsion  K s44=GJ x  is  given  by  the  user  using  the data  of  J x  ,  using  the order
AFFE_CARA_ELEM . 

The introduction of the equations [éq 4.2.1-1] with [éq 4.2.2-4] in the principle of virtual work leads to:

∫0

L
δDs

T . K s .D s dx−∫0

L

(δus ( x ) qx+δv s (x ) q y+δw s ( x ) qz ) dx=0 [éq 4.2.2-5]

The generalized deformations are calculated by ( DS  is given to the equation [éq 4.2.2-2]):

Ds=B {U } [éq 4.2.2-6]

With the matrix B  following:

B=⌊
N 1, x 0 0 0 0 0 N 2, x 0 0 0 0 0

0 0 −N 3, xx 0 N 4, xx 0 0 0 −N 5, xx 0 N 6, xx 0

0 N 3, xx 0 0 0 N 4, xx 0 N 5, xx 0 0 0 N 6, xx

0 0 0 N 1, x 0 0 0 0 0 N 2, x 0 0
⌋  

 [éq 4.2.2-7]

Discretization of space [ 0,L ]  with elements and the use of the equations [éq 4.2.2-5] the equation [éq
returns 4.2.1-6] equivalent to the resolution of a classical linear system:

K .U=F [éq 4.2.2-8]

The matrix of rigidity of the element [Figure4.2.2-a] and the vector of the efforts results are finally given
by:

Kelem=∫0

L
BT .K s .B dx

F=∫0
L
NT .Q dx

[éq 4.2.2-9]
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Figure 4.2.2-a : Multifibre beam – Calculation of Kelem

With the vector Q  who depends on the external loading: Q=(q x q y qz 0 0 0)
T

.

If we consider that the distributed efforts  qx ,q y , qz  are constant, we obtain the vector nodal forces
according to:

F=( Lqx2

Lqy
2

Lq z
2

0 −
L2q z
12

L2q y
12

Lqx
2

Lqy
2

Lq z
2

0
L2 qz
12

L2 q y
12 )

T

[éq 4.2.2-10]

4.2.3 Discretization of the fibre section – Calculation of K s

The  discretization  of  the  fibre  section  makes  it  possible  to  calculate  the  various  integrals  which
intervene in the matrix of rigidity, and the other terms necessary.

Geometry  of  fibres  gathered  in  groups of  fibres,  via  the  operator  DEFI_GEOM_FIBRE [U4.26.01])
contains in particular the characteristics (Y, Z, SURFACE) for each fibre. One can envisage with more
the 10 groups of maximum fibres by element beam.

Thus, if we have a section which comprises n  fibres we will have the following approximations of the
integrals:

K s11=∑
i=1

n

E i S i ; K s12=∑
i=1

n

E i z i S i ; K s13=∑
i=1

n

E i y iS i

K s 22=∑
i=1

n

E i zi2
Si ; K s 23=−∑

i=1

n

E i yi zi S i ; K s33=∑
i=1

n

E i yi2
S i

 [éq 4.2.3-1]

with E i  the initial or tangent module and S i the section of each fibre. The state of stress is constant
by fibre.
Each fibre is also located using yi  and z i  coordinates of the centre of gravity of fibre compared to
the  axis  of  the  section  defined  by  the  keyword  ‘COOR_AXE_POUTRE' (see  the  order
DEFI_GEOM_FIBRE [U4.26.01]).
The classification of fibres depends on the choice of the keyword ‘FIBRE' or ‘SECTION' (see the
order DEFI_GEOM_FIBRE [U4.26.01]).
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4.2.4 Integration in the linear elastic case (RIGI_MECA)

When the  behavior  of  material  is  linear,  if  the  element  beam is  homogeneous  in  its  length,  the
integration of the equation [éq 4.2.2-9] can be made analytically.
One obtains the matrix of following rigidity then:

 Kelem=(
K
s11
L

0 0 0

K
s12
L

K
s13
L

−K
s 11
L

0 0 0

−K
s12
L

−K
s13
L

12K
s33

L
3

−12K
s23

L
3

0

6K
s23

L
2

6K
s33

L
2

0

−12 K
s 33

L
3

12 K
s 23

L
3

0

6 K
s 23

L
2

6 K
s33

L
2

12 K
s22

L
3

0

−6K
s22

L
2

−6K
s23

L
2

0

12 K
s 23

L
3

−12 K
s 22

L
3

0

−6 K
s 22

L
2

−6K
s23

L
2

K
s44
L

0 0 0 0 0 −
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s 44
L

0 0

4K
s22
L

4K
s23
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s12
L
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s 23

L
2

6 K
s 22
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2

0
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L
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−6K
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0 0 0
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)  

 [éq 4.2.4-1]

with the following terms K s11 , K s12 , K s13 , K s22 , K s33 , K s23 , K s44  given to the equation [éq 4.2.2-
4].

Note:
The matrix of rigidity presented above does not take into account a possible eccentricity of the
reference axis compared to the elastic center, not to weigh down the presentation. However the
additional terms are well taken into account in the programming (see §4.5.3).

4.2.5 Integration in the non-linear case (RIGI_MECA_TANG)

When the behavior of material is nonlinear, to allow a correct integration of the internal efforts (see
paragraph [§4.4]), it is necessary to have at least two points of integration along the beam. We chose
to use two points of Gauss.

The integral of Kelem  [éq 4.2.2-9] is calculated under digital form:

Kelem=∫0
L
BT .Κ s .B dx= j∑

i=1

2

wiB (xi )
T .K s (xi ) . B ( xi) [éq 4.2.5-1]

• where  x i is  the  position  of  the  point  of  Gauss  i  in  an  element  of  reference  length  1,  i.e.:
(1±0,57735026918963)/2  ;

• wi  is the weight of the point of Gauss i . One takes here wi=0,5   for each of the 2 points; j  is
Jacobien. One takes here j=L , the real element having a length L  and the function of form to

pass to the element of reference being 
x
L

.
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K s  is calculated using the equations [éq 4.2.1-4], [éq4.2.2-4] (see paragraph [§4.2.3] for the digital
integration of these equations).

The analytical calculation of B ( xi )
T .K s ( xi ) . B ( x i)  give:
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) [éq 4.2.5-2]

where them B i  are calculated with the X-coordinate x i  element of reference with:

B1=−N 1, x=N 2, x=
1
L

B2=−N 3, xx=N 5, xx=−
6

L2
+

12 xi
L2

B3=N 4, xx=−
4
L

+
6 xi
L

B4=N 6, xx=−
2
L

+
6 xi
L

[éq 4.2.5-3]

4.3 Determination of the matrix of mass of the multifibre element

4.3.1 Determination of Melem

In the same way, the virtual work of the efforts of inertia becomes [bib2]:

W inert=∫0
L
∫S ρ(δu (x , y )

d 2u (x , y )

dt2
+δv ( x , y )

d2 v ( x , y )

dt2
+δw (x , y )

d 2w (x , y )

dt2 ) dS dx
=∫0

L
δUs .Ms .

d 2Us

dt2
dx

[éq 4.3.1-1]

with Us  the vector of “generalized” displacements.
What gives for the matrix of mass:

Ms=(
M s11 0 0 0 M s12 M s13

M s11 0 −M s12 0 0

M s11 −M s13 0 0

M s22+M s33 0 0

M s22 M s23

sym M s33

) [éq 4.3.1-2]
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with:

M s11=∫S
ρds ; M s12=∫S

ρ zds ; M s13=−∫S
ρ yds

M s22=∫S
ρ z2ds ; M s 23=−∫S

ρ yzds ; M s33=∫S
ρ y2ds

[éq 4.3.1-3]

with ρ  who can vary according to y  and z .
 

As for the matrix of rigidity, we take into account the generalized deformations and the discretization of
space [ 0,L ] . What gives finally for the elementary matrix of mass of dimension 12x12  : 

M elem
1 =[ LM s11

3

−M s13

2

M s12

2
0
LM s12

12

LM s13

12

LM s11

6

M s13

2

−M s12

2
0
−L M s12

12

−L M s13

12 ]
 

M elem
2 =[ sym13 LM s 11

35
+

6M s33

5 L

−6M s 23

5 L

−7 LM s12

20

M s23

10

11 L2M s11

210
+
M s 33

10

−M s13

2

9 LM s11

70
−

6M s33

5 L

6M s23

5 L

−3LM s12

20

M s23

10

−13 L2M s11

420
+
M s33

10 ]
 

M elem
3 =[ symsym13 LM s11

35
+

6M s22

5 L

−7L M s13

20

−11 L2M s11

210
−
M s22

10

−M s 23

10

M s12

2

6M s23

5L

9LM s11

70
−

6M s22

5 L

−3LM s13

20

13L2 M s11

420
−
M s22

10

−M s23

10 ]
 

M elem
4 =[ symsymsym LM s22+LM s33

3

L2 M s13

20

−L2 M s12

20
0
−3LMs 12

20

−3LM s13

20

LM s22+ LM s33

6

−L2M s13

30

L 2M s 12

30 ]
 

M elem
5 =[ symsymsymsym L3M s 11

105
+

2 LM s 22

15

2LM s23

15

−LM s 12

12

−M s23

10

−13 L2M s11

420
+
M s22

10

L 2M s13

30

−L3M s 11

140
−
LM s22

30

−LM s 23

30 ]
 

M elem
6 =[ symsymsymsymsym L3M s11
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+

2 LM s 33

15

−LM s13

12

13L2 M s11

420
−
M s 33

10

M s23

10

−L 2M s 12

30

−LM s23

30

−L3 M s11

140
−
LM s33

30 ]
 

M elem
7 =[ sym symsymsymsym sym LM s11

3

M s13

2

−M s 12

2
0
LM s12

12

LM s13

12 ]
 

M elem
8 =[ symsymsymsymsym symsym13LM s11

35
+

6M s33

5 L

−6M s23

5L

−7 LM s12

20

−M s23

10

−11 L2M s11

210
−
M s33

10 ]
 

M elem
9 =[ symsymsymsymsym symsymsym13L M s11

35
+

6M s 22

5 L

−7 LM s13

20

11L2 M s11

210
+
M s22
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M s23

10 ]
 

M elem
10 =[ symsymsymsymsym symsymsymsym LM s22+LM s33

3

−L2M s13

20

L 2M s 12

20 ]
 

M elem
11 =[ symsymsymsymsym symsym symsym sym L

3M s11

105
+

2LM s22

15

2 LM s 23

15 ]
 

M elem
12 =[ symsymsymsymsym symsymsymsym symsym L

3 M s11

105
+

2 LM s33

15 ]
 

with the following terms: M s 11 ,M s12 ,M s13 ,M s 22 ,M s33 ,M s 23  who are given to the equation [éq 4.3.1-
3].

Note:
The matrix of diagonal mass is reduced by the technique of the concentrated masses ([bib4]) . This
matrix  of  diagonal  mass  is  obtained  by  the  option  ‘MASS_MECA_DIAG’ of  the  operator
CALC_MATR_ELEM [U4.61.01].
The additional terms in the event of eccentricity of the axes are not presented here but are well taken
into account (see §4.5.3).

4.3.2 Discretization of the fibre section - Calculation of M s

The  discretization  of  the  fibre  section  makes  it  possible  to  calculate  the  various  integrals  which
intervene in the matrix of mass. Thus, if we have a section which comprises n  fibres we will have the
following approximations of the integrals:

M s11=∑
i=1

n

ρi S i ; M s12=∑
i=1

n

ρi z i S i ; M s13=−∑
i=1

n

ρi y iS i

M s22=∑
i=1

n

ρ i zi2
Si ; M s 23=−∑

i=1

n

ρi yi zi S i ; M s33=∑
i=1

n

ρ i yi2
S i

[éq 4.3.2-1]

with ρi  and S i  density and the section of each fibre. yi  and z i  are the coordinates of the centre of
gravity of fibre defined as previously.
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4.4 Calculation of the internal forces
The calculation of the nodal forces Fint  had in a state of internal stresses given is done by the integral:

F int=∫0

L
BT .F s dx [éq 4.4-1]

where  B  is  the  matrix  giving  the  generalized  deformations  according  to  nodal  displacements
[éq 4.2.2-6] and where Fs  is the vector of the generalized constraints given to the equation [éq 4.2.2-
2],
   

 
Figure 4.4-a  : Multifibre beam – Calculation of Fint  

Fs
T=(N M y M z M x )  [éq  4.4-2 ] 

Normal effort NR and bending moments M y  and M z  are calculated by integration of the constraints
on the section [éq 4.2.1-8].

Behaviour in torsion being supposed to remain linear, the torque is calculated with nodal axial rotations:

M x=GJ x
θ x 2−θ x 1

L
 [éq  4.4-3 ] 

The equation [éq 4.1-1] is integrated numerically:

Fi=∫0
L
BT .Fs dx= j∑

i=1

2

wiB ( xi )
T .Fs ( xi )  [éq  4.4-4 ] 

The positions and weights of the points of Gauss as well as Jacobien are given in the paragraph
[§4.2.5].

The analytical calculation of B ( xi )
T .F s (xi )  give:

[B ( xi )
T . F s ( xi ) ]

T
= [−B1N B2M z −B2M y 0 B3M y B3M z

B1 N −B2M z B2M y 0 B4M y B4M z ]
[éq 4.4-5]

where them B i  are given to the equation [éq 4.2.4-1].
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4.5 Formulation enriched in deformation
With the interpolations of displacements of the equation [éq 4.1-1], the axial generalized deformation is
constant and the curves are linear (see equations [éq 4.2.2-6], [éq 4.2.2-7] and [éq 4.2.5-3]):

 {
εs( x )=

u 2−u1

L

χ ys( x)=−(− 6

L2 +
12 x

L3 )w1+(6x

L2 −
4
L )θ y1−(−12 x

L3 +
6

L2 )w2+(6x

L2 −
4
L )θ y2

χzs( x )=(− 6

L2
+

12 x

L3 )v1+(6x

L2
−

4
L )θ z1+(−12 x

L3
+

6

L2 )v2+( 6x

L2
−

4
L )θ z2

  [éq  4.5-1 ] 

If it  there has not coupling between these two deformations (elastic case, with the average line of
reference which passes by the barycentre of the section), that does not pose problems. But in the
nonlinear case general, there is a shift of the neutral axis, and the terms  K s 12  and  K s 13  of  K s

(equations [éq 4.2.1-4] and [éq 4.2.2-4]) are not worthless, there is coupling between the moments and
the normal effort. There is then an incompatibility in the approximation of the axial deformations of a
fibre:

ε=ε
s
(x )− y χ

zs
( x )+z χ

ys
( x)  [éq  4.5-2 ] 

A means of eliminating this incompatibility is to enrich the field by axial deformation:

ε s( x) ↦ ε s( x)+ε̃s (x ) ; ε̃s( x )=α .G( x) ; G (x)=
4
L
−

8 x

L2   [éq  4.5-3 ] 

for x∈[−L
2
, L
2 ]  

where G (x )  is an enriched deformation which derives from a function “bubble” in displacement and
α  the degree of freedom of enrichment. The variational base of such an enrichment is provided by the
principle  of  Hu-Washizu  [bib5]  which  can  be  presented  same  manner  as  the  method  of  the
incompatible modes [bib6].

4.5.1 Method of the incompatible modes

The regular field of generalized displacements Us  is defined by the equation [éq 4.1-1]. Generalized
deformations Ds  and generalized constraints Fs  by the equation [éq 4.2.2-2].

The principle of Hu-Washizu consists in writing the weak form of the equilibrium equations, but also of
the calculation of the deformations and the law of behavior, in projection on the three virtual fields
(generalized displacements Us

* , generalized deformations Ds
*  and generalized constraints Fs

* ):

{
∫

0

L dU s
*

dx
⋅F s dx−W ext=0

∫
0

L

F s
*⋅( dU s

dx
−Ds )dx=0

∫
0

L

Ds
*⋅(F s−K s⋅D s ) dx=0

 [éq  4.5.1-1 ] 

One introduces the enrichment of the real deformations, and one chooses to break up the virtual field
of deformations into a “regular” part exit of the virtual field of displacements and an enriched part: 

Ds=
dU s

dx
+ D̄s Ds

*=
dU s

*

dx
+ D̄s

* [éq 4.5.1-2]

One defers [éq 4.5.1-2has] in [éq 4.5.1-1B], which justifies “enrichment” by orthogonality:
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∫0

L
Fs

*.Ds dx=0 [éq 4.5.1-3]

The equation [éq 4.5.1-1C] breaks up into two since one has two independent virtual fields in [éq 4.5.1-
2B]:

∫0

L dU s
*

dx
. (F s−K s .Ds ) dx=0 ∫0

L
Ds

*
⋅(Fs−K s⋅D s) dx=0 [éq 4.5.1-4]

 
Lastly,  the  method  of  the  incompatible  modes  consists  in  choosing  the  orthogonal  space  of  the
constraints to the space of the enriched deformations, so that [éq 4.5.1-3] is automatically checked and
[éq 4.5.1-4B] thus gives simply:

∫0

L
D̄s

* .K s .Ds dx=0 [éq 4.5.1-5]

If one returns to the strong formulation of the law of behavior in [éq 4.5.1-4has] and [éq 4.5.1-5], the
system [éq 4.5.1-1] becomes:

∫0

L dU s
*

dx
.F s dx−W ext=0 ∫0

L
Ds

*
⋅Fs dx=0 Fs=K s⋅D s [éq 4.5.1-6]

Note:
Here one enriches only the axial deformation by an element of beam of Euler-Bernoulli,  with a

continuous function, therefore D̄=(ε̄s 0 0 0)
T

.

4.5.2 Digital establishment

From the finite elements point of view, one can write displacements and the deformations in matric
form, with the enriched part:

Bs=N .(U)+Q .(α)  D=B .(U)+G .(α)  [éq 4.5.2-1]
where N  and B  are the classical matrices of the functions of interpolation and their derivative (see
[éq 4.1-1] and [éq 4.2.2-7]) and: 

Q=(4 x
L

−
4 x2

L2
0 0 0)

T

 and  G=( 4
L

−
8 x

L2
0 0 0)

T

[éq 4.5.2-2]

Note: 
G  was selected so that the element always passes the “patch test” (worthless deformation energy

for a movement of solid) : ∫0
L
G ( x )dx = 0 [éq 4.5.2-3]

After classical  handling of passage of continuous to discrete, the system of equations [éq 4.5.1-6],
written for the whole of the structure, approximates itself by:

{ Ae=1
N elem (F int−F ext )=0

he=0     ∀ e∈[1, N elem ]
 [éq 4.5.2-4]

with:

{
Fint=∫0

L
BT .Fs dx=∫0

L
BT .K s . (B .U s+G .α ) dx

Fext=∫0

L
NT .f dx

he=∫0

L
GT .Fs dx

[éq 4.5.2-5]

Ae=1

N
elem  indicate the assembly on all the elements of the grid; f  is the axial loading distributed on the

element beam. The system of equations [éq 4.5.2-4] is nonlinear, it is solved in an iterative way (see
STAT_NON_LINE). 
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With the iteration  (i+1) ,  with  ΔU( i )
=U( i+1)

−U( i )  and  Δα( i )
=α( i+1 )

−α( i )  ,  the linearization of the
system gives (iterations of correction of Newton):

{Ae=1

N elem((Fint
( i+1)−Fext

(i+1))+Ke
(i ). ΔU(i )

+Xe
(i )Δα(i ))=0

he
(i+1)+Xe

(i )T . ΔU(i )
+H e

(i )Δα(i )
=0 ∀ e∈[1,. .. , N elem ]

[éq 4.5.2-6]

with: 

{
K e

( i )
=∫L B

T .K s
( i ).B dx

Xe
( i )

=∫L B
T .K s

( i ).G dx

H e
( i )

=∫L G
T .K s

( i).G dx

[éq 4.5.2-7]

The second equation of the system [éq 4.5.2-6] is local. It makes it possible to calculate the degree of
freedom  of  enrichment  α  independently  on  each  element.  One  calculates  it  by  a  local  iterative
method (iterations ( j)  for a displacement d( i )

=ΔU(i )  fixed):

α
( j+1)
(i )

=α
( j )
( i )

−(H e( j )
( i ) )

−1
he ( j )
( i )

[éq 4.5.2-8]

Thus, when one converged at the local level, one a:

he (d
( i) , α( i)

)=0 [éq 4.5.2-9]

And one can operate a static condensation to eliminate α  at the total level.

Ke
( i)

=Ke
( i )

−Xe
( i )(H e

( i ))
−1
Xe

( i )T [éq 4.5.2-10]

From a practical point of view, this technique makes it possible to treat enrichment at the elementary
level without disturbing the number of total degrees of freedom. It is established with the level of the
elementary routine charged to calculate the options FULL_MECA, RAPH_MECA and RIGI_MECA_TANG.

Note:
• in the typical case exposed here, H e

(i)  is a reality, therefore very easy to reverse.
• in the same way, he  and α  are also realities.

• The calculation of  Ke
( i )  is explained in the paragraph §4.2.5, the other sizes of the equation

[éq 4.5.2-8] are calculated according to the same technique.
• In the same way the calculation of Fint  is explained in the paragraph § 4.4, he  in the equation

[éq 4.5.2-5] is calculated according to the same technique.

4.5.3 Taking into account of offsetting

For an elastic behavior, the enrichment of the axial deformations makes it possible to take account
correctly coupling between the normal effort and the bending moments, and to return the answer of the
beam independent of the position chosen for the reference axis (see keyword COOR_AXE_POUTRE in
the operator DEFI_GEOM_FIBRE, [U4.26.01]). It thus makes it possible to treat the case of the offset
beams.

The digital establishment of the enrichment of the axial deformations presented in paragraph 4.5.2
relates  to  nonlinear  calculations  with  STAT_NON_LINE or  DYNA_NON_LINE, for  the  options
FULL_MECA, RAPH_MECA  and  RIGI_MECA_TANG.  Indeed,  determination  of  α  is  done  by  local
iterations at the elementary level [éq 4.5.2-8].
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In  the  case  of  calculations  with  the  option  RIGI_MECA (MECA_STATIQUE,  calculation  of  modes,
calculations  nonlinear  with  prediction  ‘ELASTIC’),  one  can  determine  α  explicitly  according  to
offsettings of the elastic center compared to the reference axis:

e y=
∫S

Ey dS

∫S
E dS

=
K S13

K S11

 and e z=
∫S

Ez dS

∫S
E dS

=
K S12

K S11

One can then treat static condensation to eliminate α  on the level of the elementary matrix of rigidity.
These  calculations  were  done  analytically  and  it  matrix  is  established  explicitly  in  Code_Aster
(modification of about twenty terms if e y  and/or e z  are not worthless).

Since displacement is enriched, the matrix of mass (see §4.3) is modified. As for the matrix of rigidity,
the terms modified if  e y  and/or  e z  are not worthless, were calculated analytically and programmed
explicitly.
 
The enrichment of the deformations also modifies the calculation of the options DEGE_ELNO [éq 4.5.2-
1] and EPSI_ELGA [éq 4.5-2].

4.6 Nonlinear models of behavior usable
The supported models are on the one hand the relations of behavior  1D of type  VMIS_ISOT_LINE,
VMIS_CINE_LINE,  VMIS_ISOT_TRAC, CORR_ACIER and  PINTO_MENEGOTTO [R5.03.09] for
steels,  in  addition  the  model  MAZARS_GC [R7.01.08] dedicated  to  the  uniaxial  behavior  of  the
concrete into cyclic. One can thus have several materials by multifibre element of beam.

In addition, if the behavior used is not available in 1D, one can use the other laws 3D using the method
of  R.De Borst  [R5.03.09]).  For  example,  one  can  treat:  GRAN_IRRA_LOG,  VISC_IRRA_LOG.
However in this case, one can treat one material by multifibre element of beam.

Note:
The internal,  constant variables by fibre, are stored in the under-points attached to the point of
integration considered. 
The access  to  the  postprocessing  of  the  sizes  defined  in  the  under-points  is  done  via  format
MED3.0, of Salomé.
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5 Element multipoutre
The  element  multipoutre  is  a  generalization  of  the  multifibre  element  of  beam  presented  to  the
preceding section. This element consists of an element having kinetics of beam, but where batches of
fibres are gathered in bolsters. These bolsters themselves multifibre, like are shown with the figure 5-a.
This element is only accessible within the framework from kinematics of beams of Euler.

 
Figure 5-a  : Example of a section multipoutre made up by 4 bolsters described by a rectangular

section. In the example the bolsters consist of 4 fibres. 

5.1 Element multipoutre of reference
The kinematics of the element is the same one as for the multifibre beams. Nevertheless, since the
fibres are assembled in the form of bolsters, a field of local displacement  (up , v p ,w p)  bound to the
bolster p  is calculated:

u p ( x , y , z )=u0 ( x )−Y pθsz ( x )+Z pθ sy ( x )  

v p (x , y , z )=v0 ( x )−Z pθ sx (x )+Y pθ sz ( x )  

w p ( x , y , z )=w0 ( x )+Y pθ sx ( x )−Z pθ sy ( x )  

where the vector (u0 ,v0 ,w0)  is the field of displacement in the center of the section of the element

and the couples (Y p ,Z p)  are the positions of the bolsters p in the section of the element. For all the

bolsters, it is supposed that rotations θsx , θsy  and θsz are constant in the section.

The field of local displacement to the bolster p is then employed in order to determine a local field of
deformation for each bolster p as for the classical multifibre beams.

5.2 Internal stress analysis of the element
For all  the bolsters  p,  a field of  the generalized constraints is in the same way given that  for the

multifibre classics. One thus has, for a bolster p, the field of generalized efforts Fs
p .

Moreover,  for  the  classical  multifibre  beams,  the  torsion  of  the  bolsters  is  considered  linear  and
calculated independently

M x
p=GJ x

p
θ x 2−θx 1

L
 [éq 5.2-1]
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Effort with the nodes of the element associated with the bolster  p  also describes itself  as for the
multifibre beams:

Fi
p=(F x

p ,V y
p , V z

p ,M x
p ,M y

p ,M z
p)T=∫0

L
BT .Fs

p dx= j∑
i=1

2

wiB (xi )
T .Fs

p
( xi )  

The efforts in the bolsters are then assembled in order to describe the total effort in the element. The
normal effort and the efforts cutting-edges are obtained by summoning the individual efforts on  N p

bolsters:

Fx= ∑
p=1

N p

F x
p ; Vy= ∑

p=1

N p

V y
p ; V z= ∑

p=1

N p

V z
p  

For the moment, those are given according to the individual moments on all the bolsters as well as
offsetting of the bolsters compared to the element. This offsetting leads to a coupling between torsion
and shearings and also between the inflection and the normal efforts of the various bolsters p  :

M x= ∑
p=1

N p

M x
p+ ∑

p=1

N p

V z
pY p− ∑

p=1

N p

V y
pZ p ; M y= ∑

p=1

N p

M y
p+ ∑

p=1

N p

F x
p Z p ; M z= ∑

p=1

N p

M z
p− ∑

p=1

N p

F x
pY p  

5.3 Determination of the matrix of mass of the multifibre element and
formulation enriched in deformation
Calculation is done exactly as for the multifibre beams.
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6 Case of application
One will be able usefully to consult the cases following tests:

• ssll111a:  Static  response  of  a  reinforced  concrete  beam  (section  in  T)  to linear  behavior
thermoelastic, [V3.01.111].

• ssls143a: Beam cantilever with offset heart, [V3.03.143].
• sdll130b: Seismic response of a reinforced concrete beam (rectangular section) to linear behavior,

[V2.02.130].
• sdll132a  : Clean modes of a frame in multifibre beams; [V2.02.132].
• sdll150a: clean modes of a beam with offset heart, [V2.02.150].
• ssnl119a,  ssnl119b:  Static  response  of  a  reinforced  concrete  beam  (rectangular  section)

to nonlinear behavior, [V6.02.119].
• sdnl130a:  Seismic  response  of  a  reinforced  concrete  beam  (rectangular  section)  to nonlinear

behavior, [V5.02.130].
• ssll102j: Fixed beam subjected to unit efforts, [V3.01.102].
• ssnl106g, ssnl106h: Elastoplastic beam in traction and pure inflection, [V6.02.106].
• ssnl122a: Beam cantilever multifibre subjected to an effort [V6.02.122].
• ssnl504a: Beam of multifibre beams [V6.02.504].
• ssnl123a: Buckling of a beam multifibre [V6.02.123]. 
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