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Nonlinear relations of behavior 1D 

Summary:
This  document  describes  the  quantities  calculated  by  the  operator  STAT_NON_LINE necessary  to  the
implementation of the quasi static nonlinear algorithm describes in [R5.03.01] in the case of the elastoplastic or
viscoplastic  behaviors  monodimensional.  These behaviors,  except  contrary  mention, are  applicable  to  the
elements of BAR, with the elements of beam and multifibre beams (direction axial only) and with the elements
of concrete reinforcement (modeling GRID).

The behaviors described in this document are:
• the  behavior  of  Von  Mises  with linear  isotropic  work  hardening:  VMIS_ISOT_LINE,  and  unspecified

VMIS_ISOT_TRAC,
• the behavior of Von Mises with linear kinematic work hardening: VMIS_CINE_LINE,
• the behavior of Von Mises with linear, nonsymmetrical work hardening in traction and compression: with

restoration of  the center of the elastic range:  VMIS_ASYM_LINE. This last was developed to model the
action of the ground on the Cables with Gas Insulation,

• the behavior  of  PINTO-MENEGOTTO who allows to represent the uniaxial  elastoplastic  behavior  of  the
reinforcements of the reinforced concrete. This model translates for it not linearity of the work hardening of
the bars under cyclic loading and takes into account the Bauschinger effect. It makes it possible of more
than simulate the buckling of the reinforcements in compression. This relation is available in Code_Aster
for the elements of bar and the elements of grid,

• viscoplastic behaviors with effect of the irradiation: VISC_IRRA_LOG, GRAN_IRRA_LOG.
• the behavior of MAZARS in its version 1D . The version 1D  model of MAZARS allows to give an account

of the restoration of rigidity in the event of refermeture of the cracks.
• the behavior to model the relieving of the prestressed cables.
The resolution is made case by a method of integration implicit , except contrary mention, as from the moment
of preceding calculation, one calculates the stress field resulting from an increment of deformation, and the
tangent behavior which makes it possible to build the tangent matrices.
One describes finally  a method, similar  to the method due to R.de Borst [R5.03.03]  allowing to use all  the
behaviors available in 3D in the elements 1D.
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1 Use of the relations of behavior 1D

1.1 Relations of behavior 1D in Code_Aster
The relations treated in this document are:
VMIS_ISOT_LINE Von Mises with symmetrical linear isotropic work hardening
VMIS_ISOT_TRAC Von Mises with unspecified isotropic work hardening
VMIS_CINE_LINE Von Mises with symmetrical linear kinematic work hardening.
ECRO_CINE_1D Von Mises with symmetrical linear kinematic work hardening.
GRILLE_ISOT_LINE Von Mises with symmetrical linear isotropic work hardening
GRILLE_CINE_LINE Von Mises with symmetrical linear kinematic work hardening
PINTO_MENEGOTTO Behavior of the reinforced concrete reinforcements
GRILLE_PINTO_MEN Behavior of the reinforced concrete reinforcements
VMIS_ASYM_LINE Von Mises with asymmetrical linear work hardening and restoration
VISC_IRRA_LOG,
GRAN_IRRA_LOG

Viscoplastic behaviour of the fuel assemblies: Models resulting from the
tests REFLECTION and FLETANR

MAZARS Behavior of MAZARS in its version 1D .
RELAX_ACIER Behavior to model the relieving of the prestressed cables. 

These relations of behavior (incremental) are given in the operator STAT_NON_LINE [U4.51.03] under
the keyword factor  BEHAVIOR,  by the keyword  RELATION [U4.51.03]. They are valid  only in small
deformations. N describes for each relation of behavior the calculation of the stress field starting from
an increment of deformation given (cf algorithm of Newton [R5.03.01]), the calculation of the forces

nodal R  and of the tangent matrix K i
n

. 

1.2 General notations
All the quantities evaluated at the previous moment are subscripted by  .

Quantities evaluated at the moment t t  are not subscripted.

The increments are indicated by  . One has as follows:

Q =Q t t = Q
t  Q =Q

 Q  

  tensor  of  the constraints  (in  1D,  one is  interested only  in  the single  uniaxial
nonworthless component).

  
deviative operator:  ij= ij−

1
3
 kk ij .

   eq  equivalent value of Von Mises, equalizes in 1D with the absolute value

   increment of deformation.

A  tensor of elasticity, equal in 1D to the Young modulus E

 , , E , K  moduli of the isotropic elasticity.

  thermal dilation coefficient secant.

T  temperature.

    +  positive part.

P  cumulated plastic deformation


p  plastic deformation

1.3 Change of variables
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Whatever the type of finite element which refers to a law of behavior 1D, it is necessary to carry out a
change of variables to pass from the elementary quantities (efforts, displacements) to the constraints
and deformations.

 

1.3.1 Calculation of the deformations (small deformations)

For each finite element of Code_Aster, in STAT_NON_LINE, the total algorithm (Newton) provides to
the elementary routine, which integrates the behavior, an increase in the field of displacement.
For the elements of bar, one calculates the deformation (only one axial component) by:

=
u l −u 0

l
,

and the increase in deformation by:

 =
 u l − u0

l
,

For the elements of grid (modelings  GRID and  GRILLE_MEMBRANE),  one calculates the membrane
deformation as for the elements of hulls DKT. Simply, only one direction corresponds physically to the
directions of reinforcements. One thus finds oneself in the presence of a behavior 1D.
In addition, in small deformations, for all the models described in this document, one writes for any
moment the partition of the deformations in the form of an elastic contribution, thermal dilation, and
plastic deformation:

 t = e
t  th

 t  p
t  with 

 e t =A−1 T t   t =
1

E T 
 t 


th
t = T t   T t −T ref  Id

 

1.3.2 Calculation of the generalized efforts (forced integrated)

For integration of the behavior 1D, it is necessary to integrate the component of constraints obtained,
to provide to the total algorithm (Newton) a vector containing the generalized efforts.
For the elements of  bar, one calculates the effort   (uniform in the element,  by supposing that the
section is constant) by: N=S  ,
and the vector forces nodal equivalent (as for the elements of beam, [R3.08.01]) by: 

F=[−N
N ]  

For the elements of  GRID , one calculates the efforts as for the elements of hulls DKT (membrane

efforts)  by integration  of  the  constraints  in  the thickness (only  one sleeps and only  one point  of

integration). 
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2 Behavior  of  Von-Put  at linear  isotropic  work  hardening:
VMIS_ISOT_LINE or VMIS_ISOT_TRAC

2.1 Equations of the model VMIS_ISOT_LINE
They are the restriction of the behavior 3D [R5.03.02] on the uniaxial case:


̇

p
=

3
2
̇p 
 eq

=̇p
∣∣



E
=−

p
−

th

eq−R  p=∣∣−R  p≤0

 ̇p=0 si eq−R  p0
̇p≥0 si eq−R  p=0

 

with:

• ̇
p  speed of plastic deformation,

• p  cumulated plastic deformation,

• 
th
= T−T ref   thermal deformation,

• R  p=
E ET

E−ET

p y  
function of  linear work hardening isotropic,  or  R  p well   refine
per pieces, deduced from the traction diagram.

In the case VMIS_ISOT_LINE, the data of the material characteristics are those provided under the
keyword factor ECRO_LINE or ECRO_LINE_FO of the operator DEFI_MATERIAU [U4.43.01].

/ ECRO_LINE = (D_SIGM_EPSI = ET  , SY =  y  ) 

/ ECRO_LINE_FO = (D_SIGM_EPSI = ET  , SY =  y  ) 

In the case  VMIS_ISOT_TRAC,  the data of  the characteristics of  materials are provided under the
keyword factor TRACTION of the operator DEFI_MATERIAU [U4.43.01].

TRACTION = _F (SIGM = courbe_traction)

courbe_traction represent the traction diagram, point by point. The first point makes it possible to

define the elastic limit  y  and it Young modulus E  [R5.03.02].

 
ECRO_LINE_FO corresponds if  ET  and  y  depend on the temperature and are then calculated for

the temperature of the point of current Gauss. The Young modulus E  and the Poisson's ratio v  are
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those provided under the keywords factors ELAS or ELAS_FO. In this case the traction diagram is the
following one:

{ L=E L si L
 y

E

 L= yET L−
 y

E  si L≥
 y

E

 

When the criterion is reached one a:

 L−R  p=0 , therefore  L−R L−
 L

E =0  from where:

R  p =
E

T
E

E−E
T

p
y
=H p

y  

In the case of a traction diagram, the approach is identical to [R5.03.01].

2.2 Integration of the relation VMIS_ISOT_LINE
By  direct  implicit  discretization  of  the  relations  of  behavior,  in  a  way  similar  to  integration  3D
[R5.03.02] one obtains :

{
∣
∣−R p 

 p≤0

E  − th − 
 E

E 



=E p





∣ 
∣

 p ≥ 0 si ∣ 
∣=R  p

 p 
 p = 0 si ∣ ∣R  p p 

 

Two cases arise:

• ∣ 
∣R  p

 p  

in this case  p=0 that is to say  = E  −  th  E

E




thus ∣  E

E
E − th ∣R p

• ∣ ∣=R  p p
in this case  p≥0

thus ∣
 E

E 
E  − th ∣≥R p

 .

One from of deduced the algorithm from resolution:

let us pose 
e
=

E 

E 
E  − th 

if ∣ e∣≤R p 
 then  p = 0  and =E  −  th 

if ∣ e∣R p   then it is necessary to solve:
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e= E p





∣ 
∣

e=1E p

∣
∣   

 

thus by taking the absolute value :

∣ e∣=1 E p

∣
∣  

   

maybe, while using 
∣ 
∣= R  p 

 p 
∣ e∣=R  p

 p E p
.

One from of thus deduced:

• in the case of a linear work hardening:  p=
∣ e∣− yHp 

EH
• and in the case of an unspecified work hardening, the curve R p  being refined per pieces, one

solves the equation directly  in   p  :   in the same way  E pR  p p =∣e∣ that in 3D

[R5.03.02].

Let us notice on the way that:
 

e

∣ e∣
=



R p
 

then = 
 = 

e

∣e∣
R  p= 

e

1
E p
R  p 

 

Moreover, the option FULL_MECA allows to calculate the tangent matrix  K i
n

 with each iteration. The

tangent operator who is used for building it is calculated directly on the preceding discretized system.
One obtains directly:

if ∣ e∣R  p


 
=ET

if not 


 
=E  

Note:

The option RIGI_MECA_TANG who allows to calculate the tangent matrix K i
0

 used in the phase of

prediction of  the algorithm of  Newton,  account of  the indicator  of  plasticity  takes at the previous
moment: 

if =1


 
=ET  if =0




=E  

2.3 Internal variables
The relation of behavior VMIS_ISOT_LINE product two internal variables : p  and 
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3 Behaviour of Von Mises, linear kinematic work hardening
1D: VMIS_CINE_LINE

3.1 Equation of the model VMIS_CINE_LINE
For reasons of performances the relation is written in 1D. They are the restriction of the behavior 3D
([R5.03.02] and [R5.03.16]) on the uniaxial case. The behavior 3D is written:

=K  − p
−

th   with K  operator of elasticity

X=C p  

F  , R ,X =  −Xeq− y  with Aeq= 3
2
A⋅A

̇
p
= ṗ

∂F
∂
=

3
2

˙
p

−X
 −Xeq

 {si F0 ṗ=0
si F=0 ṗ≥0

 

In the uniaxial case, the tensors are written :

= D X=X D  p=
3
2
 p D  with D=[

2 /3    
  −1/3  
    −1/3]

As long as the loading is monotonous, the following relations immediately are obtained:

p=p X=
3
2

C p =
3
2

C  p y =F = y
E⋅ET

E−ET

p  

C is determined by: C=
2
3

E ET

E−ET

. One poses: H=
E ET

E−ET

=
3
2

C

The relation of behavior 1D is written then:


∣ −X − X∣

E  p
=E  − th − 

 E

E 




X=
3
2

C p
=H p

∣−X∣− y≤0

 ṗ=0 si∣−X∣− y0

ṗ≥0 si∣−X∣− y=0

 

The data of the material characteristics are those provided under the keyword factor  ECRO_LINE or
ECRO_LINE_FO of the operator DEFI_MATERIAU [U4.43.01]:

/ ECRO_LINE = (D_SIGM_EPSI = ET  , SY =  y  ) 

/ ECRO_LINE_FO = (D_SIGM_EPSI = ET  , SY =  y  ) 
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3.2 Integration of the relation VMIS_CINE_LINE
By  direct  implicit  discretization  of  the  relations  of  behavior,  in  a  way  similar  to integration  3D
([R5.03.02] and [R5.03.16]) one obtains:

{
∣
−X 

− X∣− y≤0

E p
=E  −  th− 

 E

E  



p
= p



−X 

− X

∣ 
−X 

− X∣
X
H
−

X 

H 
= 

p

 p≥0 si ∣ 
−X 

− X∣= y

 p=0 si ∣ 
−X 

− X∣ y

 

with  
th
= T−T ref −

T 
−T ref 

Two cases arise:

• ∣ 
−X 

− X∣ y  in  this  case   p=0  that  is  to  say

=E  −  th E

E 
 −

H

H 
X 

 thus ∣  E

E 
−X  H

H 
E  − th ∣R p  ,

• if not  p≥0 .

To simplify the writings one will pose: 
e=

E

E 
 −

H

H 
X E  −  th .

One from of deduced the algorithm from resolution: 

1) if ∣ e∣≤
y

 then  p=0, X=X  H

H 
,  = E  − th  E

E 




2) if not it is necessary to solve:

{
E  p

=E  − th
−=

e
−

 X  H

H 


p
= p



−X 

− X

∣ 
−X 

− X∣
= p

−X

∣−X∣

X−
H

H 
X 
=H  p

∣ 
−X 

− X∣− y=0

 

Let us notice that: 
H

H 
X =X−H   p

.

One deduces then from the first equation: 
e
=−XEH   p  

One thus obtains, while eliminating −X  second equation:

 
p
=

e  p
EH  p y
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While replacing  
p  the relation enters 

e  and −X , one obtains:

−X=e   y

EH  p y
  

By taking the absolute value of the two members of the preceding equation, one finds  p  :

EH  p y=∣
e∣   

Once  p  determined, one can calculate:

 
p
= p


e

∣ e∣

X=X 
 X=

H X 

H 
H  p


e

∣ e∣

 

and while using: 
−X
 y

=


e

∣e∣
, one obtains directly: = y


e

∣e∣
X  

Moreover, the option FULL_MECA allows to calculate the tangent matrix  K i
n

 with each iteration. The

tangent operator who is used for building it is calculated directly on the preceding discretized system.
One obtains directly:

if ∣ e∣R  p 
∂

 
=ET

if not


 
=E

The option RIGI_MECA_TANG who allows to calculate the tangent matrix  K i
0

 used in the phase of

prediction of the algorithm of Newton is obtained using the indicator of plasticity 
  previous moment:

• if 

=1  then 



 
=ET

• if 

=0  then 



 
=E

3.3 Internal variables
The relation of behavior VMIS_CINE_LINE product two internal variables : X .et 
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4 Behaviour of Von Mises, linear kinematic work hardening
1D: VMIS_CINE_GC

4.1 Equation of the model VMIS_CINE_GC
For reasons of performances the relation is also written in 1D for a use with finite elements of standard
multifibre  beam.  The  equations  result  from  the  restriction  of  the  behavior  3D  ([R5.03.02]  and
[R5.03.16]) on the uniaxial case.
The equations of the model are the same ones as those of the § 3.1.

The  data  of  materials  are  those  provided  under  the  keyword  factor  ECRO_LINE of  the  operator
DEFI_MATERIAU [U4.43.01] :
/ ECRO_LINE = _F(

 ♦  D_SIGM_EPSI =  ET  [Reality] 

 ♦  SY =   y  [Reality] 
◊ SIGM_LIM = sigmlim [Reality]
◊  EPSI_LIM = epsilim [Reality] 

)

Operands  SIGM_LIM and  ESPI_LIM allow to define the terminals which correspond to the limiting
states of service and ultimate, classically used at the time of study in civil engineer. 

◊  SIGM_LIM =  sigmlim 
Definition of the ultimate stress.

◊  EPSI_LIM =  epslim 
Definition of the limiting deformation.

These terminals are obligatory when the behavior is used VMIS_CINE_GC (Cf [U4.51.11] non-linear
Behaviors, [U4.42.07] DEFI_MATER_GC). In the other cases they are not taken into account.

4.2 Integration of the relation VMIS_CINE_GC
The method of integration identical to that is presented to the § 3.2.

4.3 Internal variables
Supported modeling is 1D, numbers of internal variables is of 6.
• V1  : This variable represents the constraint divided by the ultimate stress sigmlim.
• V2  : This variable represents the total deflection divided by the limiting deformation epslim.
• V3  : Kinematic work hardening: XCINXX. In 1D only a scalar is necessary.
• V4  : Plastic indicator: INDIPLAS. Indicate if the material exceeded the elastic criterion.
• V5  : nonrecoverable dissipation:  DISSIP.  During seismic calculations it  can be useful  for the

user  to  know  nonrecoverable  dissipated  energy.  The  variable  DISSIP represent  the
nonrecoverable office plurality of energy. The nonrecoverable increment of energy is written in the
form:

 Eg=
1
2
E +
 – +− -     

• V6  : thermodynamic  dissipation:  DISSTHER.  The  thermodynamic  increment  of  dissipation  is

written in the form:  Eg= y ṗ .
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5 Behavior  of  Von  Mises  with asymmetrical  linear  work
hardening: VMIS_ASYM_LINE

5.1 Equations of the model VMIS_ASYM_LINE

5.1.1 Asymmetrical behaviour in traction and compression

It is a behavior uncoupled in traction and compression, built from VMIS_ASYM_LINE, but with elastic
and different module limits of work hardening in traction and compression. We adopt an index T  for
traction  and  C  for  compression.  Elastic  behaviour  in  traction  and compression  identical  and  is
characterized by the same Young modulus. There are two fields of isotropic work hardening defined by
RT  and RC .  The two fields are independent one of the other. 

YT  elastic limit in traction. In absolute value.

YC  elastic limit in compression. In absolute value.

pT  Variable interns in traction. Algebraic value.

pC  Variable interns in compression. Algebraic value.

ETT  Slope of work hardening in traction.

ETC  Slope of work hardening in compression.

The equations of the model of behavior are:

{
̇

p
=̇−E−1

−̇
th

̇
p
=̇

C

p
̇

T

p

̇
C

p
=̇

C



∣∣

̇C
p
=̇T



∣∣
−R

T  pT ≤0

−−RC  pC ≤0

avec
ṗC=0 si −−RC  pC 0

ṗ
C
≥0 si −=R

C  pC 
ṗ

T
=0 si −R

T  pT 0

ṗ
T
≥0 si =T

T  pT 

 

̇C
p

: speed of plastic deformation in compression,

̇T
p

: speed of plastic deformation in traction,

̇
th : thermal deformation of origin : 

th
= T−T ref 

It is noticed that one cannot have simultaneously plasticization in traction and compression: that is to
say ṗC=0 , that is to say ṗC=0 , that is to say both are worthless.

The  data  of  the  material  characteristics  are  those  provided  under  the  keyword  factor
ECRO_ASYM_LINE of the operator DEFI_MATERIAU [U4.43.01].

ECRO_ASYM_LINE = _F ( 

 DT_SIGM_EPSI = ETT  , SY_T = 
yT
 , 

DC_SIGM_EPSI = ETC  , SY_C =  yC  ,)

The Young modulus E is provided under the keywords factors ELAS or ELAS_FO.
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One calculates the functions of work hardening by: 

RT  p=
ETT E

E−ETT

pT yT=HT⋅pT yT

RC  p =
ETC E

E−ETC

pC yC=HC⋅pC yC

5.2 Integration of the behavior VMIS_ASYM_LINE
By  direct  implicit  discretization  of  the  asymmetrical  relation  of  behavior,  in  a  way similar  to the
preceding one, one obtains:

{


p
= T

p
 C

p


p
= − 

th
−


E

T
p
= pT





∣ 
∣

 pT≥0 si 

 −RT  pT pT  ≤ 0

 pT=0 si  
 −RT  pT pT   0

 

C
p
= pC





∣ 
∣

− 
 −RC  pC pC ≤0

 pC≥0 si − 
 −RC  pC pC  = 0

 pC=0 si − 
 −RC  pC pC   0

 

Integration is similar to that of  VMIS_ISOT_LINE for each direction of traction and compression. It
should well be seen that the centers of the fields of elasticity are data (calculated explicitly with the
preceding step) for the incremental problem to solve.

Four cases arise:

•  − 
th
0  one poses T

e
=


E  − th 

◦ if T
e
RT  pT   in this case  pT = 0 thus =T

e
and 



 
= E

◦ if not:  pT=
∣T

e∣− yTHT pT
 

EHT

,  pC=0  

=
 T

e

1
E pT

RT  pT 

=
T

e

∣T
e∣

RT  pT 



 
=ETT

•  − 
th
0  one poses C

e
=


E  − th 

◦ if − C
e
RC  pC   in this case  pC = 0  thus =C

e  and 


 
= E
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◦ if not:  pC=
∣ C

e∣−  yCHC pC
  

EHC

,  pT=0  

=
 C

e

1
E pC

RC  pC 

=
C

e

∣C
e∣

RC  pC 



 
=ETC

Note:
The initial tangent matrix (option RIGI_MECA_TANG) is taken equal to the elastic matrix.

5.3 Internal variables

The relation of behavior VMIS_ASYM_LINE product 2 internal variables : pC  pT .

It is not usable for the elements of grid.
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6 Model of PINTO_MENEGOTTO
The model presented in this chapter describes the behavior 1D steels reinforcing of  the reinforced
concrete [feeding-bottle 1]. The law constitutive  of these steels is made up of two distinct parts: the
monotonous loading composed of  three successive  zones (linear elasticity, plastic  stage and work
hardening) and the cyclic loading whose analytical formulation was proposed by A. Giuffré and P. Pinto
in 1973 [feeding-bottle 2] and was then developed by Mr. Menegotto [feeding-bottle 3].

During cycles, the way of  loading between two points of  inversion (semi-cycle) is described by an
analytical curve of expression of the type = f   . The interest of this formulation is that the same
equation controls the discharge and load diagrams (see for example the figures [Figure 6.1.1-a] and
[Figure 6.1.2-a]).  Parameters  attached to  the function  f  are  reactualized  after  each inversion  of
loading. The reactualization of these parameters depends on the way carried out in the plastic zone
during the half - preceding cycle.

In addition,  this model can treat  the inelastic buckling of  the bars (G. Monti  and C. Nuti  [feeding-
bottle 4]). The introduction of new parameters into the equation of the curves then makes it possible to
simulate the softening of the answer stress-strain in compression.

6.1 Formulation of the model

6.1.1 Monotonous loading

This chapter describes the first loading which the bar undergoes, i.e. the part preceding activation by
the curve of Giuffré [Figure 6.1.1-a].
The  monotonous traction  diagram  of  steel  is  typically  followed by  the  three  following  successive
zones:

• The linear elasticity, defined by the Young modulus E  and elastic limit   y .  =E   (zone 1,

[Figure 6.1.1-a])

• The  plastic  stage,  ranging  between  the  limiting  elastic  strain   y
0

 and  deformation  of  work

hardening  h , higher limit  of the plate in deformation. During the stage the constraint remains

constant. = y
0

 (zone 2, [Figure 6.1.1-a])

• Work  hardening,  following  the  traction  diagram  up  to  the  ultimate  point  of  constraint  and

deformation,  u ,u  .  This  part  is  represented  by  a  polynomial  of  the  fourth  degree:

=
u
−u

−
y
0  u−


u
−

h


4

 (zone 2, [Figure 6.1.1-a])

The  slope  of  work  hardening  (used  thereafter,  for  the  cyclic  behavior)  is  defined  here  by:

Eh=
 u− y

0

u− y
0 . It is the average slope of zones 2 and 3 of the following figure.
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Figure 6.1.1-a : Curve of behavior.

6.1.2 Cyclic loading

One places oneself now if the bar undergoes a consecutive discharge with the first loading. Two cases
arise then:
• the starting position is in the elastic zone. The discharge remains in this elastic case,

• the starting position is in the plastic zone ( ≥ y
0 ).  The answer is first of all  rubber band, then,

for a certain value of the deformation, the discharge becomes nonlinear [Figure 6.1.2-a] (this is
true for a discharge starting from zone 2 or of zone 3).

The relation which the deformation must satisfy so that the curve of Giuffré is activated is the following
one:

∣ max−∣ 
∣ y

0∣
3.0

, with max  maximum deformation reached in load.

As soon as one crossed this limit  with the first discharge, it  is the cyclic behavior (curve of Giuffré
[Figure 6.1.2-a]) which is activated.
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Figure 6.1.2-a : Curve of behaviour with discharge.

6.1.2.1 Presentation of the nth semi-cycle

The shape of the curve of the nth semi-cycle depends on the plastic excursion carried out during the
half - preceding cycle. One defines the following quantities [Figure 6.1.2.1-a]:

•  y
n  : Elastic limit of the nth semi-cycle. (Calculation clarified with [§ 5.1.2.2])

• r
n−1  : Constraint at the last point of  inversion (forced maximum attack with the n-1 ième semi-

cycle).

• r
n−1

 : Deformation at the last point of inversion (maximum deformation attack with the n-1 ième

semi-cycle).

•  y
n

 : Deformation corresponding to  y
n

:  y
n
= r

n−1

 y

n
− r

n−1

E
• f  t   : Plastic excursion of the nth cycle
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Figure 6.1.2.1-a : Cyclic behavior.

6.1.2.2 Law of work hardening

The model  is  based on a kinematic  law of  work  hardening.  The branches of  the semi-cycles  lie
between two asymptotes of slope Eh  (asymptotic slope of work hardening).

One thus determines  y
n

 in the following way:  y
n
= y

n−1 . sign − p
n−1  n−1

 where the function

sign  x  =−1  if x0  and 1  if x0  and where 
n−1  of constraint of the preceding semi-cycle

[Figure is the plastic increment 6.1.2.1-a] which is defined by: 
n−1
=Eh p

n−1
.

For each semi-cycle one thus determines  y
n  according to  y

n−1  and  p
n−1 , one from of deduced,

 y
n then  the  following  semi-cycle  is  calculated  (by  the  law  of  behavior  below).  The  maximum

deformation (in absolute value) reached before changing direction will  make it possible to calculate

the plastic excursion  p
n
=r

n
− y

n
.

6.1.2.3 Analytical description of the curves = f 
The expression chosen in the model to follow the curves of loading is the following one:


*
=b *


1−b

1* 
R 

1 /R *

 

With b=
E h

E
 report of the slope of work hardening on the slope of elasticity.
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*
=
− r

n−1

 y
n
−r

n−1


*
=
− r

n−1

 y
n
−r

n−1

p
n−1
=

 p
n−1

 y
n
−r

n−1

 

Size  R  allows to describe the pace of the curve of  the branches. It is function of  the plastic way
carried out during the preceding semi-cycle:

R=R0−g  where g=
A1 .

A2

Parameters  R0 , A1  and A2  are constants without unit depending on the mechanical properties of
steel. Their values are obtained in experiments and Menegotto [feeding-bottle 3] proposes:

R0=20.0 A1=18.5 A2=.015  

6.1.3 Case of inelastic buckling

Monti and Nuti [feeding-bottle 4] show that for a relationship between the length L  and the diameter
D  bar lower than 5, the curve of compression is identical to that of traction. On the other hand, when

L /D5  a buckling of the bar is observed. In this case the curve of compression in the plastic zone
has a lenitive behavior. The model available in Code_Aster allows to also describe this phenomenon.

One defines the following variables [Figure 6.1.3-a]:
• E0  : Initial elastic Young modulus (correspondent with E without buckling).

• bc  : Report of the slope of work hardening on the elastic slope in compression.

• b t  : Report of the slope of work hardening on the elastic slope in traction (refill after compression
with buckling).

• E r  :  Modulus Young reduced in  traction  (slope of  the  curve  of  refill  after  compression  with
buckling).
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Figure 6.1.3-a : Cyclic curve of behavior.

6.1.3.1 Compression

A negative slope is introduced bc× E , where bc  is defined by:

bc=a 5.0−L /De b '
E

 y
0
−

∞   

With ∞=4.0
 y

0

L /D
 and  '=max ∣ p

n∣  the greatest plastic way carried out during the loading.

It is necessary then, as in the model without buckling, to determine  y
n

. The method is identical, but a

complementary  constraint  is  added   s
*

 in  order  to  correctly  position  the curve  compared  to  the

asymptote [Figure 6.1.3-a].

 s
*
=s b E

b−bc

1−bc

 where s  is given by : s=
11.0−L /D

10 ecL/D
−1.0 

And one thus has:  y
n
= y

n sans flambage s
*

This modifies also the value of  y
n= r

n−1
 y

n
∗ r

n−1

E

6.1.3.2 Traction

At the time of the semi-cycle in traction according to one adopts a reduced Young modulus defines by:

E r=E 0 a5 1.0−a5 e
−a6 p

2   with a5=1.05.0−L /D/ 7.5
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Note:
Parameters a , c  and a6  are constants (without unit) depend on the mechanical properties of
steel  and are in experiments given.  Values adopted by Monti  and Nuti  [feeding-bottle 4]  are:
a=0.006 c=0.500 a6=620.0  

6.2 Establishment in Code_Aster
This  model  is  accessible  in  Code_Aster  starting  from  the  keyword  BEHAVIOR
(RELATION = ‘PINTO_MENEGOTTO’)  or  (RELATION = ‘GRILLE_PINTO_MEN’)  order
STAT_NON_LINE [U4.51.03].  The whole  of  the parameters  of  the model  are  given  via  the order
DEFI_MATERIAU (keyword factor PINTO_MENEGOTTO) [U4.43.01]. One indexes the parameters here
intervening in the model:

Parameters of the
model

Intervenes in adopted value by default in Aster 


y
0

 First loading _


u  First loading _


u  First loading _


h  First loading _

b=
E

h

E
 

Cycles If no value entered one takes the
computed value with the first loading

R
0  Cycles 20

a1  Cycles 18.5

a2  Cycles 0.15

L /D  Cycles with buckling
(if L /D5 )

4 (to be by default except buckling)

a
6  Buckling 620

c  Buckling 0.5

a  Buckling 0,006
  

Parameters  R0 , a1 , a2 , a6 , c  and  a depend  on  the  mechanical  properties  of  steel  and  are  in
experiments given.  Adopted values by default  in  Code_Aster are those proposed in  the literature
[feeding-bottle 1].

One gives in [Figure 6.2-a] a comparison of the model following the value of b=
Eh

E
 for two values:

b=0.01 and b=0.001

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is
provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Relations de comportement non linéaires 1D Date : 05/01/2018 Page : 23/34
Responsable : FLÉJOU Jean-Luc Clé : R5.03.09 Révision  :

1fc1fb192f01

 
Figure 6.2-a : Comparison of 2 sets of parameters.

One gives in [Figure 6.2-b] a comparison of the model without buckling and the model and buckling.

 
Figure 6.2-b : Comparison with and without buckling.

6.3 Internal variables
They 8, and are defined by:

V1 = r
n−1

V2 =  ,r
n

V3 =  r
n

V4 = 

 − T−T  V5 =   T−T 

V6 = cycl = 0si le comportement cyclique n'est pas activé
  = 1 dans le cas contraire
V7 =  = 0 si le pas de temps correspond à une évolution linéaire
  = 1 dans le cas contraire (indicateur de plasticité
V8 = indicateur de flambage  
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7 Behaviors VISC_IRRA_LOG and GRAN_IRRA_LOG
The model presented in this chapter describes the viscoplastic behaviors 1D VISC_IRRA_LOG and
GRAN_IRRA_LOG (creep and growth under irradiation of the alloys M5 and Zircaloy-4) for the modeling
of the fuel assemblies, and applicable to the elements of bars and multifibre beams.

7.1 Formulation of the model
The equations are the following ones:

{
ε̇

vp
=ε̇ σ|σ|

ε̇=|σ|.(e
−Q
T ). Φ̇( Aω

1+ωΦ
+B−Cωe−ω t)

σ̇
E
=ε̇−ε̇

vp
−ε̇

g
−ε̇

th

 

These relations are deduced from the creep tests HALIBUT and REFLECTION [8] for various values of
neutron flux.

The  coefficients  are  provided  under  the  keyword  VISC_IRRA_LOG  or GRAN_IRRA_LOG  of
CHALLENGE_MATERIAL and   is the neutron fluence (integral flow compared to time).


g  represent the deformation of growth under flow. She is taken into account only in the behavior

GRAN_IRRA_LOG  and expresses itself in the form:


g
t = f T , tx , y , z  

Note: 
1) Neutron fluence  t x , y , z   express yourself  obligatorily  in  1020n /cm2 .  By convention in

DEFI_MATERIAU [U4.43.01], if the value provided under the keyword FLUX_PHI is equal to 1, it
is the field of fluence which is used for the behavior. In the contrary case, the value provided in
DEFI_MATERIAU is used as constant neutron flow.

2) It is a field with the nodes defined as variable of order in the order AFFE_MATERIAU.
3) Caution : The exposure field is incremental and corresponds to the history of irradiation (stored

in internal variable – cf below) to which one adds the increment of the field of fluence coming
from the variable of order.

7.2 Internal variables
Three internal variables:

• V1  : cumulated viscoplastic deformation:  p  ;

• V2  : memorizing of the history of irradiation (fluence).

• V3  : deformation of growth : 
g .

7.3 Implicit integration
By direct implicit discretization of the relations of behavior, one obtains:
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{
Δε

vp
=Δ p

σ ( t
+Δ t )

|σ ( t
+Δ t )|

Δ p=|σ (t 
+Δ t )|(e

−Q
T ).( Aω

1+ωΦ(t 
+Δ t )

+B−C ω e−ω t)ΔΦ
σ
E
−σ



E  =Δε−Δε
vp
−Δε

g
−Δε

th

avec
Δε

th
=α(T ) (T−T ref )−α(T


)(T−T ref )

Δε
g
= f (T + ,Φt

+
)− f (T  ,Φt


)

 

One can solve these equations explicitly while posing: 
e
=

E

E 



E  − g

− 
th
  

then the system is reduced to : σ=σ
e
−E σ (e

−Q
T ).( Aω

1+ωΦ
+B−C ωe−ω t)ΔΦ  

thus the solution is obtained immediately: 
σ= σ

e

1+E (e
−Q

T ) .( Aω
1+ωΦ

+B−Cωe−ω t)ΔΦ
 

and the tangent operator is written: 

∂σ
∂ ε =

E

1+E (e
−Q
T ).( Aω

1+ωΦ
+B−Cωe−ω t)ΔΦ
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8 Model of MAZARS in 1D

8.1 Equations of the model 
The objective of this modeling is to give an account of refermeture of the cracks. This model is used
only with the multifibre beams. Equations presented in the document [R7.01.08] “Model of damage of
MAZARS“are taken again and rewritten in 1D.  

 { xx=1−D t E 〈 xx
e
〉+

 xx=1−DcE 〈  xx
e
〉-

  [éq 8.1-1 ] 

with :
• E : Young modulus, 

• Dt : the variable of damage in traction.

• Dc : the variable of damage in compression.

•  xx
e

: elastic strain  xx
e
=−

th

• 
th
=T−T ref  : thermal dilation

The  only  modification  is  to  have  a  damage  of  traction  and  compression.  Coupling

t
Dt1−t

DC  do  not  exist  any  more.  The  damage  remains  always  controlled  by  the

extensions.
The damages of traction and compression are defined by the following equations if  eq≥d0  :

 Dc=1−
 d0 1−Ac 
eq

−
Ac

exp [Bceq−d0 ]
Dc∈[0 ,1[  [éq 8.1-2]

Dt=1−
d0 1−At 
eq

−
At

exp [B t  eq−d0 ]
D t∈[0 ,1 [ [éq 8.1-3]

where Ac , At , Bc , Bt , d0  are parameters materials to be identified.

The damage is controlled by the equivalent deformation   eq . Lbe extensions are paramount in the
phenomenon of  cracking of  the concrete,  the introduced equivalent  deformation is defined starting
from the positive values of the deformations, that is to say :

 {si xx
e
≥0alors  eq=∣ xx

e
∣

si xx
e
≤0alors  eq=2∣ xx

e
∣

 [éq 8.1-4]

Note:

If   xx
e
≤0 ,  in  1D  the principal  deformations in the other directions are   yy

e
= zz

e
=− xx

e .  By

using the formula  eq=〈 1〉+2〈2〉+2〈3〉+2  the preceding expression well is obtained.

The tangent matrix with for expression: 
d  xx

d  xx
e
=1− D E−

d D

d  xx
e
E  xx

e
 with: 

si xx
e
≥0et  eq≥d0

d D

d  xx
e =

d Dt

d  xx
e =  d0 1−At 

 eq
2 

AtB t

exp [Bt eq−d0] 
si  xx

e
0et  eq≥d0

d D

d  xx
e
=

d Dc

d  xx
e
= −2  d0 1−Ac 

 eq
2


Ac Bc

exp [Bc eq−d0] 
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The cases test [V6.02.120], [V6.02.119], [V5.02.130] put  in work law of behavior of MAZARS in its
version 1D .

 
Figure 8.1-a : Behavior of Mazars in its version 1D  . 

8.2 Internal variables
The law of behavior is written by uncoupling the damages from traction and of compression, the 2
damages are not any more of the internal variables [R7.01.08].

This law is dedicated to calculations of  civil  engineer. To facilitate  interpretations of  the results 2
variables are created to describe the state “limit” material concrete, in accordance with what this fact
in the regulations of reinforced concrete calculation to the limiting states.
• The variable CRITSIG give information compared to the state of stress. This variable represents

the constraint divided by the ultimate stress of the concrete given by the user SIGM_LIM.
• The  variable  CRITEPS give  information  compared  to  the  state  of  deformation.  This  variable

represents the equivalent deformation   eq  divided by the deformation limits given by the user
using the key word EPSI_LIM.

Values of the ultimate stress SIGM_LIM and of the limiting deformation EPSI_LIM are modifiable by
the user at the time of the definition of material:  DEFI_MATERIAU [U4.43.01],  DEFI_MATER_GC
[U4.42.0 7].

The writing of the law of  MAZARS does not allow to calculate an intrinsic dissipation with the model.
But,  during seismic  calculations  it  can  be useful  for  the user  to  know nonrecoverable  dissipated
energy.  The  variable  DISSIP represent  the  nonrecoverable  office  plurality  of  energy.  The

nonrecoverable increment of energy is written  Eg=
1
2
E 1−D+

  – +− -    .
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Material not-polishing substance

 
Lenitive material

Internal variables for the law of MAZARS in 1D  :

V1  CRITSIG : Criterion in constraint

V2  CRITEPS : Criterion in deformation.

V3  ENDO : Endommagement [R7.01.08].

V4  EPSEQT : Equivalent deformation of traction

V5  EPSEQC : Equivalent deformation of compression 

V6  RSIGMA : Report of tri-axialité. 

V7  TEMP_MAX  Maximum temperature attack in material 

V8  DISSIP : Energy nonrecoverable.
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9 Law of behavior RELAX_ACIER
The phenomenon of relieving of steels used in prestressed is regulated. The principal regulations are:
BPEL83, NF-EN-1992-1-1 October 2005, AFCEN-ETCC-2010,

One wishes to be able to model deformations who will vary slowly with the court of time, in particular
for the taking into account of the creep of the concrete and temperature variations . One also wishes
to take into account the influence of the temperature on the phenomenon of relieving. 
In the regular manner, it would be possible to take account of the effect of the creep of the concrete, of
the thermal deformation by making a linear combination of the various phenomena (cf regulations for
more details). This approach is incompatible with a calculation with the finite elements . 

Cbe regulations allow also to correct relieving after a “sauT “ of deformation, being able to be due to a
variation of the constraint resulting from an external loading (for example during a decennial test on
an enclosure). To in no case this “jump” cannot evolve in time, it can be only one Dirac. The method
used in this case is that of the equivalent time which, by construction, is incompatible with a code with
the finite elements.

9.1 Formulation of the model
So that the law of relieving is usable in a code with the finite elements for structural analyses with
variations of loadings such as: creep of the concrete, resumption of tension of the cables, taken into
account of the influence of thermics,… it must be incremental and thermodynamically correct.

Several formulations for the modeling of the deformation related to relieving exist in the literature.
formulation adopted is based on that proposed by J.Lemaitre :

σ=E .ε e   ε=εe+εan  

ε̇an=⟨ σ– R (εan)
f prg . k ⟩

n

 with R (εan)=
f prg . c .ε

an

(1+(b .εan)nr )
1
nr

 [éq  9.1-1 ] 

The law of behavior is 1D, and only available for modelings of type BAR, who are used to model the
cables of prestressed in the operator DEFI_CABLE_BP.
To take account of the influence of the temperature on Lhas relieving, all coefficients of the law can be
functions of the temperature.

Note:
Parameters c ,  b ,  n  and nr  are without unit, and thus independent of the units used during
the study.  k  is  adimensionné compared  to  f prg  thus compared to  the constraints,  but  not
compared to time. Indeed ε̇an  is homogeneous with [s]−1  , if the unit of time is in second. Thus
if one knows k  for a speed of deformation in a unit of time, it is necessary to convert its value
compared to the unit of time used at the time of the study. 

9.2 Internal variables
Two internal variables:
• V1  : deformation unelastic cumulated: εan .

• V2  : memorizing of tangent stiffness with the behavior.

9.3 Integration explicit
Integration is done by a method of the Runge-Kutta type of order five with variable steps.
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9.4 Identification of the parameters
Several solutions are possible:
• An analytical work makes it possible to determine relations between the coefficients present in the

formulas lawful and that of the law of behavior: tangent at the beginning of relieving, asymptote
for an “infinite” time,…

• Simulation using the formulas lawful several “tests of relieving”. For a kind of cable given which
corresponds to a set of parameters (k1, k2, ρ1000 , f prg ). Différentes value of μ  go permettRE to
obtain a beam “of tests” on which an identification of the parameters can be realized.

• Bibliographical study to find the experimental and theoretical work completed on the relieving of
the cables of prestressing, in order to use the tests directly and to identify the parameters.

9.5 Result of an Identification
This identification was realized compared to simulation ofa test of relieving obtained with the formulas
lawful.
One  places  oneself  in  the  case  ρ1000=2.5%  ( k 1=6.0E-03 ,  k 2=1.1 )  with  f prg=1800MPa ,
E=190000MPa . The initial deformation corresponds toa rate of loading of  μ=0.75 . Simulation as

well as the identification are carried out on [0h, 4000h].

The figures below compare the result of the identification with the curve lawful.

 
Figure 9.5-a  : Evolution of the constraint in the course of time: reference and code_aster. 
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Figure 9.5-b  : Zoom over the first 10 hours, of the é volution of the constraint in the

course of time. 

Observations with respect to the identification:
• Very good correspondence enters the identified law and the law lawful.
• Very good identification of the slope in the beginning and the asymptote.

The law suggested is thus ready to correctly describe the relieving of a cable of prestressing, if  its
relieving follows the lawful curves.

9.6 Use in Code_hasster
The definition of the parameters materials is done classically in the order DEFI_MATERIAU, key word
RELAX_ACIER, all the parameters can depend on the temperature.

f prg  Constraint  with rupture cable.  This size is optional,  because it  can be also defined in
materials  BPEL_ACIER or  ETCC_ACIER and  in  this  case  f prg  is  a  constant.  The
value/function given under RELAX_ACIER_CABL is priority.

ECOU_K
ECOU_NR

Corresponds to the coefficient K, in the equation 9.1-1.
Corresponds to coefficient N, in the equation 9.1-1.

ECRO_NR
ECRO_B
ECRO_C

Corresponds to the coefficient NR, in the equation 9.1-1.
Corresponds to the coefficient B, in the equation 9.1-1.
Corresponds to the coefficient C, in the equation 9.1-1.
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10 Method to use in 1D all the behaviors 3D
As for the treatment of the plane constraints  [R5.03.03] , it  is possible to profit  for modelings 1D
behaviors available in  3D . One extends for that the method due to R.de Borst to the case  1D , by
treating this condition (unidimensional stress field) not with the level of the law of behavior but with the
level of balance. One obtains thus during iterations of the algorithm of STAT_NON_LINE stress fields
which tend towards an one-way field. One checks, with convergence of the total iterations of Newton,
that the stress fields are indeed one-way, except for a precision, if  not one continues the iterations.
The method consists in  breaking up the fields of  strains and stresses into  a purely  one-way part
(direction X) and a part relative to the other directions, and to carry out a static condensation by writing
that the components of  the constraints relative  to the other directions are worthless. One does not
consider  in  the  tensors (order  2)  only  the  diagonal  terms,  written  in  the  form  of  vectors  with  3
components. Direction X corresponds to the direction of the element (bars, multifibre beam) or to the
direction of the reinforcements of grid. At one unspecified moment of the resolution of the incremental
behavior, the tangent operator D  connect the increase in constraints to the increase in deformation
by: 

d =[∂∂  ]d =D d   that one rewrites [
d  x

d  y

d  z
]=[

D11 D12 D13

D 21 D 22 D23

D31 D32 D33
][

d  x

d  y

d z
] .

By writing these increases like the difference between the iterations  n  and  n1  of Newton, one
obtains:

d = n1
−

n
=

n1
−

n  , d = n1
− 

n

With convergence, this variation must tend towards zero.

By introducing the conditions  y
n1
=0 and  z

n1  (one-way behavior),  one obtains, for the iteration

n1  :

[
d  x

d  y

d  z
]=
 x

n1
− x

n

 y
n1
− y

n

 z
n1
− z

n=
 x

n1
− x

n

− y
n

− z
n =[

D11 D12 D13

D21 D22 D23

D31 D32 D33
][

d  x

d  y

d  z
]  

The two last equations make it possible to express d  y  and d  z  according to d  x  :

{
d 

y
=

1

D
22

− y

n
−D21 d 

x
−D23 d 

z 

d 
z
=

1

D33

− z

n
−D

31
d 

x
−D

32
d 

y 
 

that is to say 

d  y=
1

−D33 y

nD23 z
nD y d  x 

d  z=
1

−D32 y

n
D22 z

n
Dz d  x 

 

with =D33 D22−D23 D32, D y=D23 D31−D21 D33, Dz=D32 D21−D31 D22

by deferring these expressions in the first equation, one obtains:

  x
n1
= x

n
D11

D12 D yD13 Dz

 d x
D12 D23−D22 D13


 z

n


D12 D 32−D12 D33


 y

n  
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Balance with the iteration n1  is written:

∫DT n1 dv=∫BT x
n1 dv=∫BT D11

D12 D yD13 D z

 d  x

+∫BT  x
n

D12 D23−D22 D13


 z

n
D12 D32−D12 D33


 y

ndv

= K n dun1∫BT  x
n

D12 D23−D 22 D13


 z

n
D12 D32−D12 D33


 y

ndv

 

It is noted that the taking into account of the unidimensional behavior intervenes on two levels:
• in the tangent matrix, by the corrective term:

∫BT D12 D yD13 D z


B dv  

• in the writing of the second member, by the corrective term:

∫BT


D12 D23−D22 D13 z

n
D12 D32−D12 D33 y

n dv  

To implement this method, it  is enough to calculate these corrective  terms and to add them to the
constraints and tangent matrix obtained of the resolution 3D of the behavior. For that it is necessary to
store information of an iteration of Newton to the other, by the means of 4 additional internal variables.
The stages of the resolution are:
• with the iteration n1 , the data are:  un1 ,  ,  and 4 internal variables (calculated with the

iteration n ):

V1=  y
n


1

D23 z

n
−D33 y

n
−D y  x

n  ,V2=
D y



V3=  z
n


1

D32 z

n
−D22 z

n
−D z x

n  ,V4=
Dz



 

• before carrying out the integration of the behavior (carried out into axisymmetric) one calculates:

  y
n1
=  y

n


1

−D33 y

n
D23 z

n
D y d  x 

  z
n1
=  z

n


1

−D32 y

n
D22 z

n
Dz d  x 

 

• the integration of the behavior provides the constraints  n1  and the tangent operator D ,
• one modifies the second member and the tangent matrix as indicated above,

• the  new internal  variables  are  stored  and it  is  checked  if  ∣ z

n1∣  and  ∣ y

n1∣ ,  with

=∣ x

n1∣ , =  RESI_INTE_RELA

Notice : 
four additional internal variables are added after the internal variables of the law of behavior.
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