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Model of great deformations GDEF_LOG
 
Summary:

This document presents a hypoelastic formulation of great deformations for the laws of behavior of the type
von Mises called GDEF_LOG in Code_Aster. 
This  model,  due  to  C.Miehe,  N.Appel  and  M.Lambrecht  [13]  is  a  model  great  deformations  based  to  a
logarithmic curve measure, with a tensor of constraints in duality individual. It is valid whatever the behavior in
small deformations and has the advantage of providing a symmetrical tangent matrix. No modification of the
internal variables kinematic is necessary. It pemet an integration incrémentalement objectifies laws of behavior
(like the model  SIMO_MIEHE). However, like all the hypoelastic laws, the laws of behavior in any rigour are
limited to the weak elastic strain.

One  illustrates  in  this  document  the  capacities  of  this  model  and  the  advantages  compared  to  the
approximation PETIT_REAC.
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1 Introduction

Most laws of behavior of Code_Aster are usable under the assumption of the small disturbances (HP), which
makes it possible to confuse the geometrical configurations initial and current. However, when the deformations
become important  (one  in  general  fixes  the  limit  at  5%),  this  assumption  is  not  checked any more.  The
concepts of particulate and partial derivative are then different, and of this fact the laws of behavior formulated
incrémentalement  lose  their  objective  character  (independence  of  the  mechanical  state  according  to  the
observer); a tedious consequence is the possible evolution of the constraints for movement of a rigid, contrary
body with physics.
In  order  to  find  objectivity,  essential  thus  to  guarantee  a  good  reliability  of  the  result,  a  strategy  great
deformations is possible. The object of this document is to present the formalism set up in Code_Aster to treat
the laws of behavior with work hardenings isotropic and kinematic and criterion of Von Mises.
The formalism is presented GDEF_LOG, due to C.Miehe, N.Appel and M.Lambrecht [13] which is a model great
deformations based to a logarithmic curve measure, with a tensor of constraints in duality individual. He is valid
some is the behavior  in small  deformations and present the advantage of  providing a symmetrical  tangent
matrix. No modification of the internal variables kinematic is necessary.
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2 Writing and assumptions

This algorithm, due to C.Miehe; N.Appel and M.Lambrecht [13] are based on an energy formulation
and the matrix of rigidity is provided in [13].

2.1 Elements of kinematics

The  elements  kinematics  in  the  continuous case  can  be  found  for  example  in  [3].  One  will  be
interested  here  in  the  case  directly  discretized  in  time  allowing  to  define  the  sizes  used  in  the

formalism  presented in  this document.  A closed initial  continuous field  is considered  Ω0⊂ℝ
3 ,  of

which each point is located by its coordinates X ∈Ω0 , undergoing a field of deformation ϕ  making

pass in the configuration  :

ϕ :Ω0→Ω⊂ℝ
3  (1)

One will note x∈  coordinates of this point in the current configuration.
The deformation evolving in the course of time, one actually defines, by the means of the temporal
discretization, a family of field ϕn  corresponding each one to one moment tn  history of evolution of
the field.
In  the  case  of  the  formalism  great  deformations  treated  here,  it  is  necessary  to  introduce  four
configurations for the field and its evolution (cf Figure 1): configuration 0  initial of reference (i.e. for

which the deformations are worthless), configuration n  at the beginning of the step of current time

t n+ 1=t n t , configuration n+1  at the end of this step of time, and a configuration medium of the

step of time, n+
1
2

, formalism being integrated with a rule of point medium.

  

 

Figure 1: Configurations necessary and gradients of transformation

From these configurations, one defines the fields of displacements and the gradients of transformation
to  pass from  the  one  to  the  other.  Sizes  making  pass from  the  initial  configuration  to  a  given
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configuration are noted in capital letter (U ,F)  and the sizes connecting two configurations deformed

between  them  are  noted  into  tiny  (u , f ) .   Table  1  recapitulates  the  various  sizes  and  their
expressions.

Starting configuration Configuration of arrival Displacement Gradient of transformation

Ω0  Ωn  U n  Fn=Id+grad0U n  

Ω0  Ωn+1  U n+1  Fn+1=Id+grad0U n+1  

Ω0  Ω
n+
1
2

 F
n+
1
2

=
1
2
(Fn+Fn+1 )  

Ωn  Ω
n+
1
2

 f
n+
1
2

= I d+
1
2
gradnu  

f
n+
1
2

=F
n+
1
2

⋅Fn
−1

f
n+
1
2

=
1
2
(f n+Id )  

Ωn  Ωn+1  u  f n+1= I d+gradnu

f n+1=Fn+1⋅Fn
−1  

f n+1=Δ F  

Ω
n+
1
2

 
Ωn+1  f̃

n+
1
2

=f n+1⋅f
n+
1
2

−1

f̃
n+
1
2

=Fn+1⋅F
n+
1
2

−1
 

Table 1: summary of displacements and gradients of transformation

From these gradients of transformation, it is possible to define the rates of deformation L  :

L°=Ḟ° Ḟ°
−1

 
(2)

Tensor rates of rotation ω :

d°=
1
2
(L°+L°

T )
 

(3)

and tensor rates of deformation d  :

ω °=
1
2
(L°−L°

T )
 

(4)

with °  indicating the configuration n , n+1  or n+ 12 . The tensor of Eulérien deformation enters the

configurations Ωn  and Ωn+1  results from these definitions:

en+1=
1
2 [ Id−(f n+1⋅f n+1

T )
−1 ]  (5)

The rate of deformation is then quite related to the deformation eulérienne:

d
n+
1
2

=
1
Δ t
f̃
n+
1
2

−1
⋅en+1⋅̃f

n+
1
2

 (6)

The last size to be introduced for our algorithm is the gradient of incremental displacement, relating to
the configuration Ωn+ 1

2
 and defined by:
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h
n+
1
2

=gradnu⋅f
n+
1
2

−1
 (7)

This last makes it possible to determine the rate of rotation in the same configuration by the relation: 

ω
n+
1
2

=
1
2Δ t [hn+

1
2

−h
n+
1
2

T

]  (8)

From  these  elements  of  kinematics,  it  is  possible  to  define  hypoelastic  laws of  behavior  whose
integration  is  objective  in  great  deformations.  The  following  paragraph  presents  this  kind  of
formulation of the laws of behavior.

2.2 Hypo-elastoplastic laws of behavior

In  this  section,  the  phenomenologic  class of  model  of  plasticity  (here  independent  of  time)  with
hypoelasticity  is  considered.  It  constitutes  an  extension  ad  hoc  writing  of  the  laws  in  small
deformations, which allows certain generics and represents an advantage in the context of a computer
code: one will see in the chapter according to whether it is possible to carry out its digital integration in
a way equivalent to that of the small deformations.

This  class  of  models  is  to  be  opposed  to  the  hyperelastic  class,  based  on  the  thermodynamic
approach of  the continuous mediums. In this context,  a free energy, being able for example to be
regarded as a function of  the temperature and the deformation of  Green-Lagrange, is defined; the
evolutions of the constraints and possibly of the internal variables result from this. One can quote for
example  the  case  of  the  hyperelastic  law of  Signorini  (cf  [4])  in  elasticity  and  the  Simo-Miehe
formalism in hyperelastoplasticity (cf [3]).

An hypo-elastoplastic law of behavior is generally built in five stages.
1. Following the example of the additive  decomposition of the small deformations, the rate of

deformation d  is first of all broken up into an elastic part and a plastic part:

d=de
+d p  (9)

2. A derivative of the constraint of Kirchhoff τ=det (F)σ  by an incremental relation function of

the elastic rate of deformation is then determined, with  x̊  a derivative  objectifies to define
and C  the tensor of elasticity.:

τ̊=C : [d−d p ]  (10)

3. One builds a field of reversibility convex defining acceptable space of the constraints starting
from a function  f , with  S  the space of  the constraints and  q  the whole of  m  internal

variables  representing  the  kinematic  work  hardening  of  material  and    scalar  variables
(including isotropic work hardening):

Ε τ={(τ ,q ,α)∈S×ℝm+1
∣ f ( τ ,q ,α)⩽0}  (11)

4. The laws of evolution of these internal variables follow a principle of normality (here only the

associated laws of behavior are considered), with 0  the plastic multiplier, ∂ f
∂ τ
( τ ,q ,α)

defining the plastic direction of flow and g (τ ,q ,α)  evolution of the other internal variables:

d p
=γ

∂ f ( τ ,q ,α)
∂ τ

 

q̊=−γ g ( τ ,q ,α)  
(12)

5. The writing of the conditions of load/discharge, classically represented by Kuhn-Tucker and the
condition of coherence:

{
0

f  ,q ,≤0
 f  ,q ,= 0

 (13)
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This class of model is thus characterized by a strong analogy with the formalisms small deformations,
with an incremental writing of the constraints which is not without raising some difficulties of digital
integration: indeed, in order to prevent the evolutions of constraints by a rigid movement of body, it is
advisable to have an objective integration of the equation (10).

2.3 Tensors of strain and stress

The model is based on the deformation logarithmic curve defined by:

E=
1
2
log [FT .F ]  (14)

The definition of  this expression is provided in appendix  2. The constraint  T  is defined in space

logarithmic curve like dual of E , so that density of power mechanical pm  express yourself by  their

product T :Ė . It is not a classical tensor of constraints, but one can connect it to the usual tensors.
Indeed mechanical power being written: 

pm=T :Ė=Π : Ḟ  (15)

One obtains: 

pm=T :Ė=T :
∂E
∂F

: Ḟ=Π : Ḟ=T :PΠ :F  (16)

With    the tensor of  the constraints of  Piola-Kirchhoff  of  first  species.  What  defines the tensor
(order four in 3D) of projection PΠ   : 

PΠ=
∂E
∂F

 (17)

One thus has:

Π=T :PΠ  (18)

Tensors of Cauchy   and of Kirchhoff   will be written in a usual way: 

J σ=τ=ΠFT  (19)

One can also calculate the second tensor of Piola-Kirchhoff S  according to T  :

pm=T :Ė=S : Δ̇=S :
1
2
Ċ  (20)

With Δ  the tensor of the deformations of Green-Lagrange such as: 

Δ=
1
2
(C−I )=

1
2
(FT F−I )  (21)

There is a new form of the mechanical power:

pm=T : Ė=T :
∂E
∂C
: Ċ=S:

1
2
Ċ  (22)

One obtains for the second tensor of Piola-Kirchhoff S   : 

S=T :P  with P=2
∂E
∂C

(23)

If  selected  physics  is  particular,  the  model  makes  it  possible  however  to  keep  the  additive
decomposition of the elastic strain and plastics classic in HP with: 

E p
=
1
2
log (F p ,T .F p

)  (24)

Such a choice is always licit. That simply amounts adopting a definition for the elastic strain. However,
this one proves to be coherent with a multiplicative decomposition, in the absence of rotation (coaxial
situation). Moreover, the plastic incompressibility is assured because:

tr Ep
=log J p  (25)
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 Elastic  energy  ψ
e  model  also takes the same shape as that  of  the small  deformations,  but  by

adopting the concepts of constraint and deformation specific to this formalism, one a: 

ψ
e
=
1
2
∥E−E p

∥E
2
=
1
2
T :C−1:T  (26)

This formulation has certain advantages:
• Dkinematic imension of the model is confined upstream and downstream from the integration

of  the behavior;  this was one of  the principal  elements for the choice of  the formalism;  all
models  of  behavior  available  in  small  deformations are  a priori available,  in  condition  of
course that has a physical direction ( the great hypoelastic deformations are well adapted to
metal behaviors, and not with the behaviors concrete);

• if  the  model  HP admits  an  energy  expression,  it  will  be  the  same  for  the  model  great
deformations: the tangent matrix is thus symmetrical;

• the only difficulty seems a priori concentrated in the definition of the deformation logarithmic
curve,  but the article [13] provides a calculation algorithm distinguishing the difficult  cases
(multiple clean entities); 

• the model,  according to the examples presented by the authors, give  results very  close to
those obtained by a classical formalism to multiplicative decomposition;

• the model can be wide with the cases of anisotropy (initial or induced).
Moreover, the article [13] provides a form of the tangent matrix in the configuration using   (called
nominal); however, as it is based on a writing starting from the constraints of Piola-Kirchhoff of first
species, not-symmetrical, which classical and is never carried out in Code_Aster, one prefers here to
use the second tensor of Piola-Kirchhoff to calculate the internal forces and the matrix tangent on the
initial configuration, while referring to [15] for example.
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3 Algorithm 
3.1 Preprocessing

The tensor of the deformations logarithmic curves calculated by spectral decomposition:

En+1=
1
2
log [Fn+1

T
⋅Fn+1 ]=

1
2
logCn+1  (27)

I.e.,  if  them  
i   are  eigenvalues  of  Cn+1  and  N  i  the  associated  clean  vectors,  then  the

measurement of selected deformation is written: 

En+1=
1
2∑i=1,3

log (λ(i))N (i )
⊗N (i )

 (28)

This measurement makes it possible to obtain an additive decomposition:

E=Ee
+E p  (29)

With: 

E p
=
1
2
log [F p ,T

⋅F p ]  and Ee
=
1
2
log [Fe ,T

⋅Fe ]  (30)

Moreover one can also write, between the moment n  and the moment n1  : 

En+1=En+ΔE  (31)

3.2 Connection with the law of behavior HP

The law of behavior HP must provide the tensor of the constraints T , defined by:

Tn+1=T̂ (ΔE ;En ,Tn ,βn )  (32)

where βn  represent the whole of the internal variables at the moment n  and Tn  constraints at the moment

n . It is thus necessary to recompute Tn  according to the constraints of Cauchy σ n  stored at the moment n
. These constraints  are written Tn=Sn :Pn

-1 . However that requires the transformation of σ n  in Sn  and the

calculation of Pn
-1  who can be expensive. One thus chooses to store the tensors T  as internal variables.

Notice
Tensors T  being stored as internal variables, the user wishing to impose a state of initial stress will have to
use the operands VARI and DEPL keyword factor ETAT_INIT order STAT_NON_LINE. Indeed, it is necessary
to give as starter the tensor of constraint defined in space logarithmic curve  T  (and not that of Cauchy σ  ).
The user wishing to use the formalism GDEF_LOG with an initial stress field (ETAT_INIT) is advised to refer to
the case test ssnp159b (V6.03.159).

3.3 Postprocessing

The tensor of the constraints of Piola-Kirchhoff of second species is obtained by:

Sn+1=Tn+1:Pn+1  (33)

With Pn+1=∂C (En+1 )  . This quantity is calculated via an algorithm presented in [13] and quoted in appendix 2.

It is also pointed out that the tensor of the constraints of Cauchy is obtained by: 

J σ=τ=F⋅S⋅FT
=F⋅(T :P)⋅FT  (34)

One obtains the tangent module, in configuration known as “Lagrangian”, by derivation of Sn+1   : 

Ṡn+1=Cn+1
ep :

1
2
Ċn+1  with Cn+1

ep
=Pn+1

T :En+1
ep :Pn+1+Tn+1 :Ln+1 (35)

 En+1
ep =

∂Tn+1

∂En+1
 represent the tangent operator resulting from the law of behavior and Ln+1  is the tensor of a

nature six (in 3D) defined by: 
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Ln+1=4∂CC
2

(En+1 )  (36)

One  can  then  calculate  on  this  configuration  the  internal  forces  and  the  tangent  matrix,  on  the  initial
configuration, as in [14]. L‘objectivity is preserved (forced invariant by rotation in work hardenings isotropic and
kinematic) and the good precision (results identical to SIMO_MIEHE into isotropic).
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4 Validity of the models of great deformations

4.1 Identification of the parameters

It also should be specified that the formalism here presented and studied does not extend the validity
of the laws of behavior in the field as of great deformations, it nothing but does propose an objective
derivation of it.  To clarify this matter, it  is possible to consider the case of an elastoplastic law with
linear isotropic work hardening. This kind of law of plasticity is valid physically in small deformations;
its  use is  extended to  the great  deformations,  but  its  physical  validity  can  be precisely  called  in
question.

Moreover, one identification made on tests in small deformations must be potentially reconsidered; on
figure 2, one presents a traction diagram modelled by a linear isotropic work hardening: the tangent
module  must  inevitably  be  defined  compared  to  the  beach  of  deformation  considered.  In  small
deformations, it seems more judicious to use ET1 ; if  the deformations are more important, it seems

more judicious to use ET2  like value of the slope of work hardening. But it is felt well that it is the
physical validity of the law itself which should be reconsideration.

 

Figure 2: Identification in great or small deformations
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5 Comparison with PETIT_REAC 

5.1 Approximation of the great deformations by PETIT_REAC

The principle  of  the formulation  PETIT_REAC simply  consist  in  reactualizing  the geometry  of  the
problem during iterations of Newton (and not at the end of each step of time). This means that all the
quantities intervening in  the equations of  the problem are evaluated on the current  configuration.
Anything else is not modified compared to the case small disturbances. 

5.1.1 Kinematic description

Kinematic description is the same one as that of the small disturbances. This means that increment of
deformation is calculated by:

Δε=
1
2
∇i

 Δu ∇ i

T  Δu    (37)

 i  being reactualized  configuration.  The total  deflection  is  then the sum of  each one of  these
increments of linearized deformation, calculated on different configurations. It is thus delicate to give
him a physical  direction and better is worth to use it  like  an indicator  of  the level  of  deformation
reached. The assumption of additive decomposition of the deformations is applied.

5.1.2 Elastoplastic relation of behavior

In the  expression  of  the  relation  elastic  stress-strains,  one  saw the  need for  using  an  objective
derivative:  σ̊=C: [̇−̇ p

] . With  PETIT_REAC one replaces the objective derivative  by the simple
derivative in time: it is thus not objective. Consequently, the employment of PETIT_REAC is thus not
appropriate to great rotations but it is it with the great deformations, under certain conditions [10]:

• very small increments;
• very small rotations (what implies a quasi-radial loading);
• elastic strain small in front of the plastic deformations;
• isotropic behavior.

5.1.3 Balance and tangent matrix

In term of finite elements, the resolution by PETIT_REAC imply with each step of load the resolution of
the same nonlinear system as in small deformations [11]:

{L
int
(ui , t i )+BT .λi=Lext

(t i)

B .ui=ud
(t i)

 (38)

With the difference close the internal forces are formally calculated by:

Lint ui , t i =QT ui : σ  (39)

where the  operator  Q  depends on displacements.  Within  this  framework,  the  calculation  of  the
tangent matrix carries out to:

K i
n=
∂ Lint

∂ u
∣
u i

n , t i
=Q u  :

∂σ
∂ u
∣
u

i
n , t

i


∂Q u 
∂ u

∣
u

i
n , t

i

: σ  (40)

The  first  term  is  the  contribution  of  the  behavior,  similar  to  what  was  presented  in  small
transformations, to the difference which this contribution is evaluated here in current configuration.
The second term is the contribution of the geometry which is not present in small transformations. 
Within the framework of the resolution PETIT_REAC, this term is not present in the calculation of the
tangent matrix. One thus has:

K i
n
=Q u :

∂ σ
∂ u
∣
ui

n , t i
 (41)

The absence of the geometrical contribution in the tangent matrix can sometimes make convergence
difficult.
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5.2 Comparison on an example
 
Formalism PETIT_REAC (cf [6]) bases itself on an actualization of the geometry for the calculation of
the  increment  of  deformation  before  integrating  the  behavior  of  way  identical  to  the  small
deformations. This allows a simple treatment of the great deformations, but in a very approximate way,
not objectifies and being able to generate great errors.
To be convinced some, let us consider the alternate traction-rotation of a cube; for more details on the
test, one will refer to [7] for example.

Figure 3: Example of traction rotation of a cube

During the phases of rotation, the constraint must remain constant: a rigid movement of body does not
generate constraints (in statics all at least and without viscosity).

If  one  considers  the  answer  obtained  with  a  behavior  VMIS_ISOT_LINE for  the  deformations
PETIT_REAC and GDEF_LOG , the type of deformation PETIT_REAC is put at fault whereas GDEF_LOG
is valid (and provides an answer identical to SIMO_MIEHE ). 
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8 Appendix  1:  Calculation  of  the  deformations  logarithmic
curves

8.1 Notations:

A  indicate a tensor of order two, and  Ā  a tensor of  order four. We adopt the notation of Voigt,  (see for
example [16]) definite for a tensor of order two:

A={
A11
A22
A33
√2 A12
√2A13
√2 A23

}  (42)

And for a tensor of order four:

Ā={
A1111 A1122 A1133 √2 A1112 √2 A1123 √2 A1113
A2211 A2222 A2233 √2 A2212 √2 A2223 √2 A2213
A3311 A3322 A3333 √2 A3312 √2 A3323 √2 A3313
√2A1211 √2 A1222 √2 A1233 2 A1212 2 A1223 2 A1213
√2A1311 √2 A1322 √2 A1333 2 A1312 2 A1323 2 A1313
√2 A2311 √2 A2322 √2 A2333 2 A2312 2 A2323 2 A2313

}  (43)

Where the components relating to the notation of Voigt will be indicated by a Greek letter:

∥Aij∥=∥Aα∥  (44)

There are then the following properties: 

A :B=Aij Bij=Aα Bα  

Ā :B=Aijkl Bkl=AαβBβ  

Ā : B̄=Aijkl Bklmn=AαβBβγ  

(45)

The reverse of a tensor of a nature qutre comprising minor symmetries ( Aijrs=A jirs=Aijsr ) is written:

Ā : Ā−1= Īd  

Aijrs Arskl
−1
= I ijkl=

1
2 (δik δ jl+δil δ jk )  

Aαγ Aγβ
−1
= I αβ=δαβ  

(46)

8.2 Expression of the constraints in Lagrangian configuration 

The power of the interior efforts is written:

p int=T : Ė=S: P̄
−1 Ė  (47)

with P̄=2
∂E
∂C

 what makes it possible to calculate  S=T :P  (or  S ij=T kl :Pklij ). To calculate the tensor of

the constraints of Cauchy, it is enough to write:

σ=
1

det F
F⋅S⋅FT

 (48)
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Typical case of the plane constraints:
 
In this case, one entirely does not know det F . Indeed, the component zz  tensor of deformations logarithmic
curves E  is unknown, because dependent on the law of behavior. While limiting itself to the behaviors such

as det F p
=0 (plastic incompressibility), one has then det F=det Fe .

According to [16] one can calculate this expression: 

det Fe
=eE xx

e +E yy
e +E zz

e

 (49)

Where Ee  represent the elastic of the deformations logarithmic curves, known part for any law of elastoplastic

or élasto-viscoplastic behavior by the law of Hooke Ee
=Λ

−1
⋅T .

One will show this relation. One recalls the definition of the deformations logarithmic curves:

E ij=
1
2 ∑k=1,3

log (λ(k ))N i
(k )
⊗N j

(k )
 (50)

What leads to this expression of the determinant:

det Fe
=√detFTF=√λ1λ2λ3  (51)

i  being eigenvalues of FT
⋅F  . Thus: 

log (det Fe
)=
1
2
{log (λ1)+log (λ2)+log (λ3)}  (52)

By applying the exponential function, there is the result ( 49 ). 

8.3 Expression of the tangent operator in Lagrangian configuration 

By deriving the expression S=T :P  compared to time:

Ṡ=Ṫ : P̄+T : ˙̄P=(∂T∂E : Ė): P̄+T :(
∂ P̄
∂C

:Ċ)=[ ∂T∂E :( ∂E∂C :Ċ)] : P̄+T :( ∂ P̄∂C : Ċ)  (53)

That is to say: 

Ṡ=( P̄T : Ē p : P̄+T : ̄̄L ) :
1
2
Ċ  (54)

with  ̄̄L=4 ∂2E
∂C∂C  and  Ē p=∂T

∂E .  What  defines  the  tangent  operator ̄̄Cep
=( P̄T

⋅Ē p
⋅P̄+T : ̄̄L )  who  checks

Ṡ=̄̄Cep : 12 Ċ . Or, according to the deformations of Green-Lagrange Δ=
1
2
(C−Id )  :

∂S
∂Δ
=
∂S
∂C

:
∂C
∂Δ
=2

∂S
∂C
=̄̄Cep

 (55)

The  expression  of  this  tangent  operator  as  well  as  the  tensor  of  the  constraints,  both  in  Lagrangian
configuration,  allow,  for  the  calculation  of  the  internal  forces,  to  use  a  variational  formulation  in  initial
configuration, as in [R5.03.20] for example. One writes balance in variational form on the initial configuration: 

δW int⋅δ v+SW ext⋅δv=0   ∀δ v  kinematically acceptable (56)

Under the assumption that the loading does not depend on the geometrical transformation, the virtual work of
the external efforts is written like a linear form:

δW ext⋅δ v=∫
Ω0

ρ0 F iδ vi dΩ0+ ∫
∂FΩ0

T i
d
δ v i dS o  (57)

With  F  the voluminal loading and Td  a surface loading being exerted on the edge ∂FΩ0 . There still,  we
choose  the  initial  configuration  like  configuration  of  reference,  to  express  the  work  of  the  interior
efforts [R5,03,20]. [R7.02.03]: 

SW int⋅δ v=−∫
Ω0

F ik S kl δ v i , l d Ωo  with  v i ,l=
∂ dv i

∂ X l

(58)
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In the optics of a resolution by a method of Newton, it is important to also express the variation second of the
virtual work of the interior efforts, namely, geometrical rigidity:

d 2W int⋅δu⋅δv=−∫
Ω0

δu i , k S rkl δ v r i , l dΩ0  (59)

And elastic rigidity:

−∫
Ω0

δui ,q F ip( ∂S∂Δ )pqkl F jk δ v j , l dΩ0  (60)

8.4 Effective calculation of the deformations logarithmic curves

The deformations logarithmic curves are defined by:

E=
1
2
log(C)=

1
2
log (FT

⋅F)  (61)

In any rigour, it would be necessary to add the metric tensor in the case of an initial configuration defined in a
space different from Euclidean space (case of the hulls for example). To simplify the writings, we will  in the
case of place ourselves an Euclidean initial  configuration, the components of the vectors and tensors being
written in an orthonormal reference mark 3D. The restriction on the 2D is immediate. The calculation of the
deformation logarithmic  curve  can be done only  in  the clean reference mark.  The three eigenvalues thus
should be determined 

i   and clean vectors N (i)  solutions of the problem to the eigenvalues according to:

CN (i)
=λ

( i)N (i)  (62)

One can then calculate the three values in “clean” space:

e i =
1
2
log  i  (63)

The deformations logarithmic curves are then transported within the space of origin by:

E ij=
1
2 ∑k=1,3

log (λ(k ))N i
(k )
⊗N j

(k )
 (64)

Because the function logarithmic curve is an isotropic function of the tensor C  [16]. For postprocessing (see
§3.3 ), i.e. the calculation of the tensor of the constraints and the tangent operator, the quantities should be

calculated P̄=2 ∂E∂C  : 

P̄=∑
i=1,3

1
2
d (i)N (i)

⊗N (i)
⊗M (ii)

+∑
i=1,3
∑
j≠i

3

θijN
(i)
⊗N ( j)

⊗M (ij)  (65)

And quantity T : ̄̄L  :

T : ̄̄L=∑
i

3 1
4

f (i)ζ(ii)M( ii)
⊗M(ii)

+∑
i

3

∑
j≠i

3

∑
k≠i , k≠ j

3

2ηζ(ij)M(ik )
⊗M(ij)

+∑
i

3

∑
j≠i

2ξ(ij )[ζ(ij )(M( ij)⊗M( jj)+M( jj)⊗M(ij))+ζ( jj)M(ij)⊗M(ij)]

 (66)

With  d (i)= 1

λ( i)
,  f (i)= −2

(λ( i))2
,  ζ

(ij)
=T :N (i)

⊗N ( j) ,  Mab
(ij)
=N a

(i)N b
( j)
+N a

( j)N b
(i) .  

 ij ,  
 ij  and  

ij  are

defined by:
• if all the eigenvalues are different: 
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 ij
=

e i−e j  
 i− j  

 


 ij
=
 ij−1

2
d  j 

 i− j  
 

=∑
i

3

∑
j≠i

3

∑
k≠i , k≠ j

3
e i 

2i − ji −k 
 

(67)

• if two eigenvalues are equal 
i 
=

 j
≠

k   :


 ij
=

 ji
= 1
2
d  j  , 

 ij
=

 ji 
=1
8
f  j  , =

ki   

for n=k , m∈{i , j }  or m=k , n∈{i , j }


mn
=

em −e n  
m −n 

 and 
mn
=
mn

−1
2
d n

m−n  

(68)

• if the three eigenvalues are equal 
i 
=

 j
=

k   :


 ij
=1
2
d  j  , 

 ij
= 1
8
f  j  , =1

8
f  j (69)
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