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Law of damage regularized ENDO_SCALAIRE

Summary:

This document describes the model of elastic behavior fragile  ENDO_SCALAIRE available only for  nonlocal
modeling with  gradient  of  damage  GRAD_VARI.  The damage is  modelled in  a  scalar  way;  the loadings in
compression and traction are not distinguished. Unlike the other laws of damage introduced previously, the
latter  behaves  in  a  regular  way  (not  snap-back,  lengthening  finished  with the  rupture)   at  least  in  the
unidimensional cases.
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1 Scope of application

The law ENDO_SCALAIRE return in a broad family of the laws of damage (see for example [R5.03.18]).
It aims in particular at modelling a fragile elastic behavior in nonlocal version (GRAD_VARI [R5.04.01])
so that its behavior at least in the unidimensional cases is regular. The parameters of the law were
selected to ensure at the same time the absence of snap-back in the answer force-displacement, as
well  as the finished lengthening of  the bar 1D to the rupture.  The local  version of  the law is  not
implemented. The modelled material is elastic isotropic. Its rigidity can decrease in an irreversible way
when the deformation energy becomes important,  without distinguishing traction from compression.
The width of the bands of localization is controlled by a parameter material, indicated in the operator
DEFI_MATERIAU under the keyword C_GRAD_VARI keyword factor NON_LOCAL [U4.43.01]. 
The piloting of the type  PRED_ELAS [R5.03.80] seems the mode of control of the level of the most
suitable loading.

2 Variational formulation of the problem of damage

2.1 Case of a generic law
Two equivalent  approaches can be used to describe the process of  damage of  a fragile  isotropic
material. On a side it is possible to derive the law from damage within the framework of generalized
standard description. In this case it is necessary to define a free energy of the system, like  potential of
dissipation. The rule of flow then established the evolution of the internal variables.
As for the description of damage one needs only a scalar variable, preceding description is simplified
and been able  to  be  brought  back  towards  a  variational  problem under  constraint  of  increase  in
damage [bib2]. 
To define a law of behavior in gradient of damage [R5.04.01] it is thus enough to express the density of
total  free  energy  (elastique+dissipation)  according  to  tensor  to  deformation    and  of  variable  of
damage  0a1 . The space distribution of the damage is given then by a field a x  . Density of
free energy presents itself in general in the following form:

 , a=Aaw a c /2 ∇ a2                                 éq 2.1-1

Here c  is the parameter of nonlocality (C_GRAD_VARI)  w   the elastic deformation energy, a
the energy of dissipation and Aa  the function of rigidity. a=0  corresponds to healthy material and
a=1  corresponds to material completely damaged: A1=0, A0 =1 . The problem of evolution is

from now on a simple problem of minimization of free energy of Helmholtz F≡∫ , ad   under

constraint ȧ≥0 1.

min ,a F  , a ,  où          F  , a =∫ [Aa  :E :ac /2 ∇ a2 ]d  

where one replaced w = : E :/ 2  by using the definition of the tensor of Hooke. Two equations
derive from the variational problem of minimization:  F  , a/ =0 2 and  F  , a/ a≥0 . The
inequality in the second equation is related to the presence of imposed constraint. These two equations

must be satisfied everywhere in the field with integration  . They are supplemented by an equation

of  coherence  of  Kuhn-Tucker  ȧ⋅ F  , a/ a=0 .  On  the  edges  ∂  we  obtain  an  additional

condition of normality  ∇ a⋅n=0 , where  n  is vector-normal. Finally the variable of damage and its

1 One notes by  ∇ a  the space derivative of  the field of damage and by  ȧ  that  related to the temporal
evolution

2  F  , a/   is the variational derivative partial according to the direction of the space field  x , field
a x   remaining fixed.
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gradient must be continuous at interior of the field of integration to carry out the minimum of functional
calculus in question (see [bib2,4] for more details).

2.2 Relations of behavior

The link between the variational formulation and the usual laws of evolution is direct. The state of
material is characterized by the deformation    and the damage a , ranging between 0 and 1. The
relation stress-strain is defined, which remains elastic, and rigidity is affected by the damage:

=F , a / =A a E : éq 2.2-1

with  E  the tensor of Hooke. The evolution of the damage, always increasing, is controlled by the
following function threshold:

f  , a =− , a / a=−1
2

A ' a  :E :− ' a c  a éq 2.2-2

The condition of coherence takes its usual form then:

f  , a ≤0 ȧ≥0 ȧ f  , a =0 éq 2.2-3

Two characteristics of this formulation are noted. Firstly, the function threshold is not-local because of
the presence of the Laplacian of damage. Then, the absence of condition of flow is justified by the
double role of the damage a , on a side it is presented in the form of an internal variable of evolution,
other side it fulfills the mission of the parameter of Lagrange  ≡a . 
One sees also the advantage of presentation of the laws of damage in their  variational form. It  is
enough to describe the density of total free energy (éq.2.1-1), which includes dissipation, to define the
law of evolution completely.

2.3 Identification of the parameters pour the law ENDO_SCALAIRE

In the law ENDO_SCALAIRE the functions of rigidity and dissipation are selected as follows: 

a=ka , Aa = 1−a
1 a 

2

 

The parameters of this law of behavior are then five. On the one hand, the Young modulus E  and the

Poisson's ratio   who determine the tensor of Hooke by:

E−1⋅=
1
E

 −


E
 t r  Id éq 2.2-1

In addition, k , , c  who define the lenitive behavior, as well as the width characteristic of the band of
damage.  The  latter  can  be  readjusted  with  the  macroscopic  parameters  starting  from  the
unidimensional  model,  which  admits  an semi-analytical  solution (feeding-bottle  6.7).  By noting the
constraint with the peak by  y , the energy of the rupture of Griffith by Gf   and zone damaged with

the rupture cuts it by D  one obtains: 

k=
3G f

4 D
, c=

3
8
DG f , =

3 EG f

4 y
2 D

−1  

The digital tests showed that to avoid the presence of snap-back in the answer force-displacement in
1D, it would be necessary to have ≥2 . 8 . For this reason the choice was made to simplify the entry
of the data of the model, one not informs the complete game of macroscopic parameters  y , G f , D ,

but directly parameters of the model   , c  and  the constraint with the peak   y , given under the
keywords  factors  ENDO_SCALAIRE (GAMMA,  SY)  and NON_LOCAL (C_GRAD_VARI) of  the
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operator DEFI_MATERIAU. As for E  and  , they are given classically under the keyword factor ELAS
or ELAS_FO. The reasoning which follows, is valid in a strict sense only for modeling 1D, but can be

useful for the not informed users. If parameters E ,  , Gf , y  are a priori defined, the user can vary

the parameter D  in order to satisfy the condition with absence of snap-backs local ≥2 . 8 . It must
make sure thereafter that the size of the system considered is higher than the bandwidth of damage
D .

Example of 
concrete  in
traction

E=3 0GPa,  =0 . 2

Gf=1 0 0 N / m

 y=3 MPa

 
ELASE=3 e 1 0 ,NU=0 . 2

ENDO_SCALAIREGAMMA=1 / 4 D−1 ,SY=3 e 6

NON_LOCAL C_GRAD_VARI=37 . 5 D

 

The bandwidth of damage is to be chosen while respecting ≥2 . 8  <=>  D≤6 6m m

2.4 Integration of the law of behavior locally

We present here the method of integration of the law ENDO_SCALAIRE in its local version ( c=0 ), so
that the user can make a generalization for the case not-room, which it is generic and rests entirely on
the algorithm presented in Doc.  [R5.04.01]. 

Temporal discretization of the equations [éq 2.2-1] with [éq 2.1-3] on a step of time ][ tt   is realized by

a diagram of implicit Euler. To integrate in time the law of behavior consists in determining the state of
constraint and damage of the solution of the following nonlinear system:

=Aa E : éq 2.4-1

f loc  ε , a ≤0 a−a−≥0 a−a− ⋅f loc ε , a =0 éq 2.4-2

where the variables without indices correspond to the step of final time  t , such as for example the

deformation  ; the state of material at the beginning of the step of time 
- , a -

  is indicated by the
index  “-”.  The  local  function  threshold  is  given  by  (éq.  2.2-2):

f loc  , a =1
1−a 

1a 3
 :E :−k

A method of resolution was proposed by [bib3]. It starts by examining the solution without evolution of
the damage (also called elastic test) then, if necessary, carries out a correction to check the condition
of  coherence.  In  this  case,  the  existence  and  the  unicity  of  the  solution  guarantee  the  good
performance of the method. Let us consider the elastic test:

a=a−  solution if  f e l ≡f loc  , a
− ≤0 éq 2.4-3

In the contrary case, the damage is obtained while solving f loc  , a =0  (polynomial of order 3).

1−a 1 :E :  / k=1 a3                   éq 2.4-4

It is the largest root which is selected among the three existing.
It still remains to be made sure that the damage does not exceed value 1. In fact, when a=1 , the
rigidity of the material point considered is cancelled A1=0 . Insofar as no technique of suppression
of finite elements “broken” is put in work (technical possibly delicate when the finite elements have
several points of Gauss), of the worthless pivots can appear in the matrix of rigidity. This is why one
introduces a digital threshold of elastic residual rigidity for the tangent matrix, which can be indicated
under the keyword factor  COEF_RIGI_MINI of the operator  DEFI_MATERIAU.  This value without
dimension is a multiplying coefficient of the elastic module of an isotropic linear model. To preserve a
reasonable conditioning of the matrix of rigidity, the value by default is chosen min Aa=10−5 . 
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An indicator  , arranged in the second internal variable, the behavior specifies then during the step of
current time:

• 0  elastic behavior (deformation energy lower than the threshold)

• 1  evolution of the damage

• 2  saturated damage ( a=1 ).

•

2.5 Integration of the law of behavior in nonlocal

We present here only the method of integration of the law ENDO_SCALAIRE in its local version ( c=0
), because generalization for the case not-room is generic and rests entirely on the algorithm presented
in Doc.  [R5.04.01].  It is noted that for the nonlocal version the function threshold is shifted, we thus
obtain a polynomial of order 4 to solve. As for the constraint, it is given by [éq 2.4-1] in all the cases. 

2.6 Description of the internal variables

The internal variables are three:

• VI 1  damage a
• VI 2  indicator 
• VI 3  residual rigidity 1−A a 

3 Piloting by elastic prediction

The piloting of the type PRED_ELAS standard controls the intensity of the loading to satisfy a certain

equation  related  to  the  value  with  the  function  threshold  f el  during  the  elastic  test  [bib5].
Consequently, only the points where the damage is not saturated are taken into account. The algorithm
which deals with this mode of piloting, cf [R5.03.80], requires the resolution of each one of these points
of Gauss of the following scalar equation in which    is a data and   the unknown factor:

       

f el
impo pilo , a

_
=   éq 3-1 

Let us note that this equation is modified for piloting  PRED_ELAS in ENDO_SCALAIRE  in order to have
the parameter     who corresponds to the increment of damage which one seeks to obtain for at
least a point of the structure. One then does not seek any more one parameter of piloting    who
makes leave the criterion a value    with the damage resulting from the step of previous time (cf Eq
3-1), but a parameter   who brings back for us on the criterion with a damage increased by   :

f el
impo pilo , a

_
=     ⇒   f el

 impo pilo , a
_
=0  éq 3-2

4 Description of the versions of the document

Version
 Aster

Author (S) 
Organization (S)

Description of the modifications

10.0 K.KAZYMYRENKO,  E.LORENTZ,
S.CUVILLIEZ
EDF-R&D/AMA

Initial text

10.2 K.KAZYMYRENKO, EDF-R&D/AMA Minor corrections of the notations
,
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