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Rate of refund of energy in thermoelasticity 
non-linear 

Summary:

One presents the calculation of the rate of refund of energy by the method theta in 2D or 3D for a non-linear
thermoelastic problem. The relation of nonlinear elastic behavior is described in [R5.03.20].
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1 Calculation of the rate of refund of energy by the method
theta in nonlinear thermoelasticity

1.1 Relation of behavior

One considers a fissured solid occupying the field   space R2  or R3 . That is to say:

• u  the field of displacement,
• T  the field of temperature,

• f  the field of voluminal forces applied to   ,

• g  the field of surface forces applied to a part S  of ∂ ,

• U  the field of displacements imposed on a part Sd  of ∂ .

f

g


S

Sd

 

The  behavior  of  the  solid  is  supposed to  be  elastic  non-linear  such  as  the  relation  of  behavior
coincides with the elastoplastic law of  Hencky-Von Put (isotropic work hardening) in the case of  a
loading which induces a radial and monotonous evolution in any point. This model is selected in the
orders  CALC_G via  the  keyword  RELATION='  ELAS_VMIS_LINE' or  ‘ELAS_VMIS_TRAC’ or
‘ELAS_VMIS_PUIS’ under the keyword factor BEHAVIOR [R5.03.20].

One indicates by:

•   the tensor of deformations,

•  °  the tensor of the initial deformations,

•   the tensor of the constraints,

•  °  the tensor of the initial constraints,

•   ,  ° , ° ,T   density of free energy.

  is connected to the field of displacement u  by:

 u=
1
2
u i , ju j, i  

Density of free energy   ,  ° , ° ,T   is a convex and differentiable, known function for a given
state [R5.03.20 éq 3]. The relation of behavior of material is written in the form:

  ij=
∂

∂  ij
 ,  ° , ° ,T   
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It  derives from the potential  free energy. For this hyperelastic relation of behavior, one can give a
direction to the rate  of  refund of  energy within  the framework  of  the comprehensive  approach in
breaking process. It is not the case for a plastic relation of behavior.

1.2 Potential energy and relations of balance

One defines spaces of the fields kinematically acceptable V  and V 0 .

 
V = {vadmissibles , v=U sur S d}

V 0 = {v admissibles ,v=O sur Sd }
 

With the assumptions of the paragraph [§1.1] (with   °= °=0 ), the relations of balance in weak
formulation are:

 {u∈V

∫


 ijv i , j d=∫


f iv id ∫


g i v i d  , ∀v∈V 0
 

They are obtained by minimizing the total potential energy of the system:

Wv =∫


  v  , T d =∫


f i v i d ∫


g i v id   

The demonstration is identical to that in linear elasticity [R7.02.01 §1.2].

1.3 Lagrangian expression of the rate of refund of energy

That is to say m  the unit normal with 0  located in the tangent plan at ∂  in  .



mo

 

That is to say the field   such as:

 ∈={ tels que  . n=0sur}  

while noting n  the normal with ∂ .
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The rate of refund of energy G  is solution of the variational equation:

∫ o

G⋅mdS=G  ,∀∈  

where G   is defined by:

G  =∫

 ijui ,pp , j− k , k−

∂

∂T
T,k kd 

∫
  ij−

1
2
 ij
°   ij ,k° k−  ij−ij

th
−

1
2
 ij
°  ij , kk d 

∫
f iu ik , kf i ,k kui d

∫S
g i , kku ig iu ik ,k−∂

∂nk
nk d 

−∫S d

 ijn jUi , kk d 

 

The demonstration is identical  to that  of  the calculation of   G  in  linear elasticity  [R7.02.01].  The
expression is the same one, postprocessing is thus identical.

1.4 Establishment of G in nonlinear thermoelasticity in Code_Aster
The  types  of  elements  and  loadings,  the  environment  necessary  are  the  same  ones as for  the
establishment of G  in linear thermoelasticity [R7.02.01 §2.4].

For the calculation of the various terms of  G  , in a given state, one recovers the density of free

energy   , T  , deformations   and constraints   , calculated for the linear relation of behavior
not - (routine NMELNL).

It is supposed that  °= °=0  (identical term in linear or non-linear thermoelasticity). The density of
free energy is written then [R5.03.20 §1.5]:

• in linear thermoelasticity:

  ,T =1
2

K  kk−3 T −T réf  
2


2
3

 eq
2  

with

 eq
2
=

3
2
 ij
D
 ij
D
=

3
2  ij−

1
3
 kk ij  ij−1

3
 kk ij

 eq
2
=

3
2  ij  ij−1

3
 kk
2 

 

• in non-linear thermoelasticity 2 eq≥ y   :

   , T =1
2

K kk−3 T −T réf  
2


1
6
R  p   eq  

2
∫0

p eq  R  s ds  

with R  p  eq    : function of work hardening.  
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For a linear isotropic work hardening (RELATION= ‘ELAS_VMIS_LINE’) one a:

R  p = y p
E ET

E−ET

=ya p

p=
 eq− y

3a
avec a=

E ET

E−ET

A  p =∫0

p
R  s ds=  yp

1
2

a p2
=

1
2
 y p

p
2

 ya p 

A  p =
p
2

 yR  p  

 

Postprocessing is then identical to the problem in linear elasticity except for the thermal term:

THER=−
∂

∂T
T, k k  

If coefficients of Lamé T    and  T   are independent of the temperature, this term is null. In the

contrary case, it is necessary to calculate 
∂

∂T
 ,T   at a given moment.

For a linear isotropic work hardening, one a:

∂

∂T
 , T =[12 dK T 

dT
 kk−3 T −T réf  −3Kd  T 

dT
T−T réf ]  kk−3T−T réf 


R  p 

62 [2dR  P 
dT

−
d  T 

dT
R  p  ]dA  p 

dT

 

with

dR  p 
dT

=
d y T 

dT


d a T 
dT

pa
d p T 

dT

d a T 
dT

=
1

 E−ET 
2 d ET T 

dT
E2

−
d E T 

dT
E T

2
dp T 

dT
=

1

3a 
2 [  y− eq  3 d  T 

dT


dA T 
dT −3a 

d y T 
dT ]

dA  p 
dT

=
1
2

dp T 
dT

 yR p 
1
2

pd y T 

dT


d Rp T 
dT 
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1.5 Warning

Caution! By definition, in the case general:

  , T ≠ :

Although it  is  possible to carry  out a followed elastoplastic  calculation by the calculation of  G  in
nonlinear elasticity, it should well be known that does not have any thermodynamic direction and that it

is normal that the result depends on the field  .

2 Calculation of the rate of refund of energy by the method
theta in great transformations

One extends the relation of behavior of [§1] to great displacements and great rotations, insofar as it
derives  from  a  potential  (hyperelastic  law).  This  functionality  is  started  by  the  keyword
DEFORMATION=' GROT_GDEP' in the order CALC_G.

2.1 Relation of behavior

One indicates by:

• E  the tensor of deformations of Green-Lagrange,

• S  the  tensor  of  the  constraints  of  Piola-Lagrange  called  still  second tensor  of  Piola  -
Kirchoff,

•  E  density of energy internal.

The behavior of the solid is supposed to be hyperelastic, namely that:

• E  is connected to the field of displacement u  measured compared to the configuration of

reference 0  by: 

Eiju=
1
2
u i , ju j ,iuk , iuk , j  

•  S is connected to the tensor of the constraints of cauchy T  by:

Sij=det FFik
-1TklF jl

-1
 

F  being the gradient  of  the transformation which makes pass from  the configuration of

reference 0  with the current configuration  , connected to displacement by:

F ij= iju i , j  
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The relation of behavior of a material hyperelastic is written in the form:

Sij =
∂

∂Eij
=

∂

∂E jj
= S ji

 

This relation describes a non-linear elastic behavior, similar to that of [§1.1]. She gives the opportunity
of dealing with the problems of breaking process without integrating plasticity into it. And in the case of
a monotonous radial loading, it makes it possible to obtain strains and stresses of the structure similar
to those which one would obtain if  the material presented an isotropic work hardening. The material
hyperelastic has a reversible mechanical  behavior, i.e. any cycle of  loading does not generate any
dissipation.

This model is selected in the order CALC_G [U4.82.03] via the keyword:

RELATION: ‘ELAS’
for an elastic relation “linear”, i.e. the relation between the strains and the stresses considered is
linear,

RELATION: ‘ELAS_VMIS_LINE’ or ‘ELAS_VMIS_TRAC’ or ‘ELAS_VMIS_PUIS’
for  a  “nonlinear”  relation  of  elastic  behavior  (law  of  HENCKY-VON PUT  at isotropic  work
hardening).

Such a relation of behavior makes it possible in any rigour to take into account great deformations and
great rotations. However, one confines oneself  with small deformations to ensure the existence of a
solution  and  to  be  identical  to an  elastoplastic  behavior  under  a  monotonous  radial  loading
[R5.03.20 §2.1].

2.2 Potential energy and relations of balance

The loading considered is reduced to a nonfollowing surface density R  applied to a part 0  edge of

0  (assumption of the dead loads [R5.03.20 §2.2]).

One defines a space of the fields kinematically acceptable V :

V={vadmissibles, v=0sur 0}  

The relations of balance in weak formulation are:

∫
0

FikSkjv i , jd 0=∫


R i v id   

They can be obtained by minimizing the total potential energy of the system:

W v =∫
 0

 Ev d−∫


R iv i d   
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Indeed, if this functional calculus is minimal for the field of displacement u , then:

W =∫
0

∂

∂Eij
 Eijd−∫



Ri v i d  =0, ∀ v∈V

=∫
0

Sij
1
2
 v i , j v j, i vp, iup , jup , i vp , jd −∫



R i v id 

=∫
0

Sij ipup, i vp, id−∫


R i v id 

=∫
0

FpiSij vp , jd −∫


R i v id 

=∫
0

FikSkj v i , jd −∫


R i v id  =0

 

We thus find the equilibrium equations and the relation of behavior while having posed:

Sij=
∂

∂Eij
 

2.3 Lagrangian expression of the rate of refund of energy in non-linear
thermoelasticity and great transformations

By definition, the rate of refund of energy G  is defined by the opposite of the derivative of the potential energy

in balance compared to the field    [bib1]. It is calculated by the method theta, which is a Lagrangian method

of derivation of the potential energy [bib4] and [bib2]. Transformations are considered F  :MM M 

field  in 0 a field   who correspond to propagations of the crack. With these families of configuration of

reference  thus  defined    correspond of  the  families  of  deformed  configurations  where  the  crack  was

propagated. The rate of  refund of  energy  G  is then the opposite of  the derivative  of  the potential  energy

W u   with balance compared to the initial evolution of the bottom of crack: 

G= −  d W u 
d 

=0

 

One notes as in [feeding-bottle 4] par. Lagrangian derivation in a virtual propagation of crack speed  . That is

to say  ,M  an unspecified field (   positive reality and M  belonging to the field 0 ), we will note:

 ,M=  ,F M et ̇=
∂ 

∂

=0
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Potential energy definite on   is brought back on 0 ,  R  is supposed to be independent of    ,
derivation compared to the parameter of propagation   is then easy and the rate of refund of energy
in this propagation is solution of the variational equation:

∫ o

G ⋅m dS=G   ,∀∈  

with:

−G  =∫o

 E ,T  
.

 E ,T k ,kd −∫
R i u̇iR i , kk uiR iui k, k− ∂

∂nk
nk d   

However:

 E , T  
.

=
∂

∂Eij
Ėij

∂

∂T
Ṫ  

Thereafter, we will consider only the term 
∂

∂Eij
Ėij , the thermal term being treated in the same way

that into small displacement [R7.02.01].

And according to proposal 2 of [bib4]:

Ė ij=
1
2  u̇ i , ju̇ j ,iu̇k ,iuk , juk , i u̇k , j

−
1
2 u i , pqp, ju j ,pqp , iuk , pqp, iuk , juk , iuk , pqp, j

 

One can eliminate u̇  expression of  G  as in small deformations by noticing that u̇  is kinematically
acceptable (cf [bib3] for the problems of regularity) and by using the equilibrium equation:

∫o

  E 
.

d−∫
Ri u̇id =  

∫
o

∂

∂Eij

1
2

 u̇i , ju̇ j , iu̇k , iuk , juk , i u̇k , j  d 

−∫
R i u̇i d −∫ o

∂

∂Eij

1
2
ui , p p, ju j, p p, iuk, p p, iuk , juk , iuk , p p , jd 

=−∫ o

S ij ui ,p  p, juk , iuk , pp , j d 

=−∫
 o

S ij dkiuk ,i uk , pp, jd 

=−∫ o

S ijFkiuk , pqp, j d 

=−∫
 o

FikSkju i , pqp, jd 
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Finally, one obtains:

G  =∫
 0

F ikSkj ui ,p p, j− E k, k d∫


R i , k ku iR iui  k ,k−
∂

∂nk
nk d   

The expression supplements for the following loadings:

• nonfollowing surface density R  applied to a part   edge of 0 ,

• nonfollowing voluminal density f  applied to the field  ,

and by taking account of thermics:

G = ∫
0

Fik Skj u i , p p , j− E k , k−
∂

∂T
T, k  kd 

∫
0

f iu i k, kf i ,k  kui d

∫


R i , kku iR iui  k ,k−
∂

∂nk
nk d 

 

2.4 Establishment in Code_Aster

The comparison of the formulas of G  [§1.3] and [§1.4] watch that terms of G   are very close.
The introduction of the great transformations requires little modification in postprocessing.

The presence of  the keyword  DEFORMATION=' GROT_GDEP' under the keyword factor  BEHAVIOR
order CALC_G indicate that it is necessary to recover the tensor of the constraints of Piola-Lagrange
S  and the gradient of the transformation F  (routines NMGEOM and NMELNL).

The types of finite elements are the same ones as in linear elasticity [R7.02.01 §2.4]. They are the
isoparametric elements 2D and 3D.

The supported loadings are those supported in  linear  elasticity  provided that they are dead loads:
typically an imposed force is a dead load while the pressure is a following loading since it depends on
the orientation of surface, therefore of the transformation.

2.5 Restriction

With  the  relation  of  behavior  specified  with  the  §2,  there  is  a  formulation  of  G  valid  for  great
deformations for materials very-rubber bands, but… if one wishes a coherence with the actual material
which,  let  us recall  it,  is  elastoplastic,  it  is  imperative  to  confine  itself  with  small  deformations,
displacements and rotations being able to be large.

The conditions of  loadings proportional and monotonous, essential  to ensure the coherence of  the
model with actual  material,  lead to important  restrictions of  the field of  with the capable problems
being dealt by this method (thermics in particular can lead to local discharges). It cannot thus be a
question that of  a palliative  solution before being able to give  a direction to the rate of  refund of
energy within the framework of plastic behaviors.
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