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Criteria of mechanical stability

Summary:

This document presents the various criteria of mechanical stability available in  Code_Aster. One can classify
them according to two categories:

• The  criterion  of  stability  associated  with  the  conservative  systems,  which  arises  as  the
generalization of the criterion of Euler based on the analysis of the matrix of reactualized total stiffness.
• The criterion of stability associated with the dissipative systems, which must take account of the
constraints of irreversibility related to dissipation of energy.  

These criteria are used to distinguish in the quasistatic problems, the unstable digital solutions resulting from the
calculation of balance carried out in the finite element method (derivative first of worthless but derived energy
second negative) of the solutions physical, stable, for which the derivative second of energy is positive.

The criteria presented in this document are directly applicable to the framework of dynamics, but as they take
account neither of the matrix of mass nor of that of damping, one cannot speak about dynamic criterion of
stability to the classical direction (for example, of negative or null damping becoming).

These  criteria  are  called  within  the  operators  STAT_NON_LINE and  DYNA_NON_LINE,  to  be  able  to  be
evaluated with each step of the nonlinear dynamic resolution incremental quasi-static or transitory.
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1 Stability of a conservative system

1.1 Definition of the stability of a conservative system

The position of balance of a conservative system is known as stable if it is invariant under the effect of
small disturbances. What amounts checking that the solution obtained is of course a minimum local of
the energy potential  or known as differently, to check that  the functional calculus of  Hill  [bib19]  is
conevexe. Mathematically, that results in the checking of the positivity of the derivative second of the
potential  energy  Φ at  the point  of  balance  U.  Let  us consider a small  disturbance of the state of
balance  ν, observing the boundary conditions imposed on the structure. One must always find the
inequality: 

u≤uv  éq 1.1 -1

The leading cause of loss of stability for a conservative mechanical structure is buckling. One is thus
interested more particularly in following this concept.

Note: There exist other definitions of stability. One finds in particular stability within the meaning of
Rice, criterion defines in 1975, which amounts checking the strict positivity of the eigenvalues of the
acoustic tensor. However, one can have instability within the meaning of Hill before instability within the
meaning of Rice. The criterion within the meaning of Hill is thus more conservative. This is why it is
that which one privileges. 

1.2 General concept of buckling

Buckling is a phenomenon of instability [bib6]. Its appearance can be observed in particular on slim
elements of low stiffness of inflection. Beyond of a certain level of loading, the structure undergoes an
important  change  of  configuration  (which  can  appear  by  sudden  appearance  of  undulations,  for
example). One distinguishes two types of buckling: buckling by junction and buckling by boundary point
([bib1],  [bib7],  [bib8]).  To describe  the  behavior  of  these  two  types  of  buckling,  one  considers  a
structure of which the parameter   is characteristic of the loading and of which the parameter   is
characteristic of displacement.

 

Figure 1.2-a : Buckling by junction

  
Between the point O  and the point A , the structure admits only one family of curve  , . It can,
for example to act of classical linear elasticity or elastoplasticity, where if the problem is well posed
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(cf. [§1.3]), there is the classical result of existence and unicity of the solution. On the other hand,
beyond the point  A , several families of curves are solutions of the problem of balance. This loss of
unicity  be accompanied by an instability of the initial branch (known as fundamental). The secondary
branch can be stable (curved AB ) or unstable (curve AB ’ ). The load beyond which there is junction

calls the critical load  cr . Buckling by junction is characterized by the fact that the mode (or direction
of buckling), which initiates the secondary branch, does not generate additional work in the loading
applied: mode of buckling being orthogonal to him.

An example of buckling per junction with instability of the secondary branch is in the case of a circular
cylindrical hull under axial compression [bib10]. Examples of buckling per junction with stability of the
secondary branch are in elastic beams in axial compression, circular rings in radial compression and
rectangular plates in longitudinal compression.

 

Figure 1.2-b : Buckling by boundary point

 

Figure 1.2-c : Buckling by boundary point with breakdown

On the  figures  [Figure  1.2-b]  and [Figure  1.2-c],  which  illustrates buckling by boundary  point,  the
structure does not admit that only one family   ,  of solution of the equilibrium equations. At the
point  A , there is loss of stability of the solution with total loss of rigidity in the case of the figure
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[Figure  1.2-b]  and with  a phenomenon of  breakdown in  the case of  the figure [Figure 1.2-c]  (the
solution becomes again stable after a discontinuity of displacement; case of a segment of a sphere
under external pressure). The point A  boundary point is then called. The problem thus amounts in all
the cases seeking the load from which the fundamental branch of balance becomes unstable or of
dubious stability. That generally mobilizes great displacements. One can finally have the case of the
ruin by plastic flow which is connected at the boundary point [Figure 1.2-b].

Code_Aster the research of the modes of linear buckling, qualified allows method of Euler. It is enough
to solve a problem generalized with the eigenvalues (thanks to the operator  CALC_MODES with the
keyword TYPE_RESU=' MODE_FLAMB'). The two matrices arguments of the generalized problem are
the matrix of rigidity and the matrix of geometrical rigidity, resulting from a linear elastic preliminary
calculation (operator MECA_STATIQUE).

In  all  the  cases  where  one  cannot  neglect  nonthe  linearities,  which  they,  the  approach  Euler  is
geometrical or behavioral is not more valid.

We thus propose a criterion ad hoc, that one can regard as a generalization of the criterion of Euler on
reactualized configuration. This criterion is built on the matrix of assembled tangent stiffness, which is
calculated in the algorithm of the Newton type to solve the nonlinear quasi-static problems (operator
STAT_NON_LINE)  or  dynamic  nonlinear  transients  (operator  DYNA_NON_LINE).  This  criterion,  into
nonlinear, makes it possible to treat rigorously the relations of nonlinear elastic behavior. On the other
hand, the laws which present a dissipative aspect are treated rigorously only if the loading, in any point
of the structure, follows a monotonous evolution (that corresponds to the assumption of Hill [bib4]).

1.3 Writing mechanical problem

This chapter aims to introduce the formalism general of structural analysis adapted to the nonlinear
mechanical problem which we wish to tackle.
To start,  we  thus  briefly  will  point  out  the setting in  equation  of  a  standard problem of  structural
analysis. To simplify, we place ourselves, all at least at the beginning, within the framework of the small
disturbances.

 

Figure 1.3-a : Representation of a problem of structural analysis

The structure  S  is  subjected  to  imposed voluminal  efforts  f d ,  surface  efforts Fd  on the  edge

∂S 2  and of imposed displacements U d  on the rest of the edge of S , noted ∂ S 1 .
The unknown factors of the problem of reference on the solid are the field of displacement u  and the
stress field of Cauchy  . 

The solution ( u , ) problem of structure where the heating effects are neglected defines as:

To find u ,∈H1S ×L
2
 S  who checks:

• Equations of connections:
u∣∂ S1

=Ud éq 1.3 - 1
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• Relation of behavior:

 = f    with   who is the tensor of deformation éq 1.3 -2

 =
1
2
∇ u+ ∇ uT  in assumption of small disturbances éq 1.3 - 3

If a linear elastic behavior is supposed 

     =C :  éq 1.3 - 4
• Equilibrium equations:

{  = ∇ . + f d avec  =
d2u

d t2

 .n∣∂S 2
= Fd

éq 1.3 - 5

1.4 Study of stability

The object of this chapter is to present the methods making it possible to determine the stability of the
nonlinear quasi-static balance of a structure in a conservative system. To start, we are interested only
in detection of instability, or more exactly in the loss of unicity of the solution [bib6]. Among recent work
of synthesis, one can quote [bib9] or [bib7] and [bib8] which presents very complete papers on the
nonlinear analysis of stability of the structures.
The calculation of the post-critical solution will not be approached.

To analyze stability, we introduce an initial configuration of reference S 0 , a current configuration S

and a disturbed configuration  S 1 :

 

Figure 1.4-a : Definition of the various configurations
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That is to say u  the field of displacement of the points of the structure. The behavior is supposed, for
the moment, linear elastic isotropic. The structure subjected to imposed displacements and efforts will
become deformed and become the structure located by the current configuration  S . We seek to
determine a state of balance characterized by the field of displacement between the initial configuration
S 0  and current  configuration  S ,  as well  as a  stress field  of  Cauchy, noted   ,  or  of  Piola-

Kirchhoff II, noted   :

 =detF .F -1 I with {
F= ∇ u+ I : tenseur gradient de la transformation

det F=
0


 I : tenseur de Piola - Kirchhoff I

⇒ =
0


.F -1 . .F- T

éq 1.4 - 1

In this expression, one sees appearing the relationship between the initial density  0  and current

density  .
The following stage is the prediction of the stability of this balance.

To this end, we will seek a criterion allowing to determine if there exists only one field of displacement
balancing the efforts applied. We will suppose that the efforts increase gradually and we will seek to
find as from which moment there exist two configurations S  and S 1  who respect the equations of
the problem: we seek a point of junction, it is - with-to say a loss of unicity of the solution. This moment
will be described as moment of buckling.

1.4.1 Writing of the elastic geometrical nonlinear problem

The solution u ,  problem of structure without heating effects checks ([bib1], [bib7], [bib2]):

• Equations of connections:
u ∣∂ S 0

=Ud éq 1.4.1-1
• Elastic relation of behavior:

 = ,   éq 1.4.1-2

with   who is the tensor of deformation. If a linear elastic behavior is supposed:
 

 =C  éq 1.4.1-3
• Equilibrium equations:

{ = ∇ . + f d avec  =
d2u

d t 2

F . .n0∣∂ S 0
=Fd

éq 1.4.1-4

The associated tensor of deformation is that of Green-Lagrange (referred with the initial configuration):

                                             

 u=
1
2
FT F -I  avecF= ∇ u+ I

⇒ u= 
L
u+

1
2


Q
u ,u

           éq 1.4.1-5
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with: { 
L
u=

1
2
∇ u+ ∇

T u: partie linéaire 


Q
u ,u= ∇

T u .∇ u : partie quadratique
                                            éq 1.4.1-6

We can now write the Principle of the Virtual Powers in geometrical nonlinear elasticity and quasi-
static:

p intal int - pext = 0,∀u*C A 0           

Avec :{pint =∫
 S 0

Tr 
*
d  =∫

 S 0

Tr [ Lu+
1
2

Q
u ,uC

L
u*+ 

Q
u ,u*]d 

pext = ∫
∂ S 0

Fd .u*dS +∫
S 0

f d .u*d 

éq 1.4.1-7

In order to obtain a discretized formulation, one can rewrite the tensor of deformation:

{ u=[BL+
1
2
BNL u] .u

 =C uavecqui est le tenseur de Piola - Kirchhoff II

éq 1.4.1-8

The power of the internal efforts becomes:

P int= ∫
 S O

Tr [  .[BL+BNL u]T u* ] d  éq 1.4.1-9

By taking account of the relation of behavior [éq 1.4.1-3]:

P int=∫
 S 0

Tr [ [BL+
1
2
BNLu]

T

C[BL+BNL u]u.u*] d  éq 1.4.1-10

After discretization by the finite elements, one can put this equation in matric form:

u* .[K 0+KL
u+KQ

u] .u= Pext éq 1.4.1-11

The matrix  KL  is symmetrical and there are the following expressions:

{
K0=∫

 S 0

BL
T

CBL d 

KL =∫
 S 0

[ 1
2
BNL

uTCBL +BLT

CBL
u ]d 

KQ =
1
2 ∫

 S 0

BNLuTCBNLd 

éq 1.4.1-12

 
One obtains directly what precedes the writing in matric form by balance:

[K0+KL
u+KQ

u] .u=F ext éq 1.4.1-13
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That is to say still, in an equivalent way:

F int= Fext avec F int=∫
 S 0

[BL+BNL u]t  d OMEGA éq 1.4.1-14

We can just as easily formulate the Principle of the Virtual Powers starting from the state of stress of
Cauchy and of the tensor of deformation of Almansi (thus on the current configuration). One obtains
then:

∫
S

Tr   u*d = ∫
∂S

Fd .u*dS +∫
 S

f d .u*d  éq 1.4.1-15

That one can also put in the following form, after discretization:

∫
S

BT d  = Fint =Fext

éq 1.4.1-16

That is to say still, by supposing the elastic relation of behavior:

K u=Fext avecK=∫
S

BTCBd  éq 1.4.1-17

The integrals of these equations are calculated on current volume S  who depends, of course, of the

field of solution displacement u . In the same way, the operator B  must be calculated on the current

configuration S  and not on the initial configuration S 0 , as it was the case previously.

1.4.2 Study of stability into nonlinear geometrical

One will seek if there exists a second field of displacement kinematically acceptable which checks the
equilibrium equations: one thus seeks to know if there will be junction.

This second field will be written as the sum of a disturbance added to the first solution, is:  u=u1 ,

with   who is a very small reality and which one will make tend towards 0. The field u1  is selected
kinematically acceptable to 0.

The Principle of the Virtual Powers will be then written for this new field.

The field of deformation is put in the form:

 u+u1=  u+ [ Lu1+
1
2

Q
u1 ,u]+


2

2

q
u1 ,u1 éq 1.4.2-1

The virtual deformations are given by:

1
*= 

L
u*+ 

q
u ,u*+ 

Q
u1 ,u

*
= u*+ 

Q
u1 ,u éq 1.4.2-2

In the same way, if we choose S0  like configuration of reference, the constraints become:

1=+ C[ Lu1+
1
2

Q
u ,u1+ 

Q
u1 ,u]+ 

2

2
C 

Q
u1 ,u1    éq 1.4.2-3
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We can now express the Principle of the Virtual Powers for the field of disturbed displacement. Let us
take  as assumptions that  the imposed forces  do not  depend on displacement  and that  the initial
configuration is selected like reference.

  

{
P1

int = P int

+ [∫ S0

Tr  
Q
u1 ,u* d +∫

 S0

Tr [ u*C L
u1+

1
2


Q
u ,u1+ 

Q
u1 ,u]d  ]+ o

P1
ext = Pext

P1
int - P1

ext = 0

éq 1.4.2-4

For   sufficient small, it will be enough that the term proportional to   in the expression [éq 1.4.2-4]

is null so that the Principle of the Virtual Powers is checked for the field u= u1 . In this case, there
will not be thus more unicity of the solution, which will translate the loss of stability of the system.

When the imposed efforts do not depend on the geometrical configuration, the study of stability is thus
stated like:

Knowing the actual position, i.e the field of displacement u  kinematically acceptable and the stress

field  , if there exists a field of displacement u1  kinematically acceptable to 0 and such as, for any

displacement u*  kinematically acceptable to 0, one has:

∫
S0

Tr 
Q
u1 ,u*d 

+∫
S0

Tr [ Lu*C
L
u1+ 

Q
u ,u*C

L
u1+ 

L
u*C

Q
u ,u1+ 

Q
u ,u*C

Q
u ,u1 ] d 

= 0
éq 1.4.2-5

Then the problem considered is unstable.

One can express this condition of junction in matric form by introducing, moreover, the geometrical
matrix of stiffness K   who discretizes the first term of it:

∀ u*CA 0,u*TKt u1=0

Avec KT =K 0 +K L
u+KQ

u+K   qui est la raideur tangente 
éq 1.4.2-6

If one writes the condition of junction on the current configuration S , then one a:

∀ u*CA 0,u*T [K + K  ]u1=0 éq 1.4.2-7

The constraint to be considered is then the constraint of Cauchy and all the integrals are evaluated on
the current field S .

1.4.2.1 Stability condition of a nonlinear elastic balance

It comes immediately, that if there exists a state such that the tangent matrix  KT  defined above is

singular, we will have displayed a field of displacement well  u1  not no one which shows the loss of
unicity of the solution of the mechanical problem. This field of displacement is the mode of buckling.
One can notice that the condition of junction is well checked, whatever the standard and it sign of u1  :
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in this direction, one thus speaks about mode of buckling, like direction, because one limited oneself in
[éq 1.4.2-4] to the first order in  .

  
1.4.2.2 Case of small displacements: load of Euler

When displacements can be qualified the small  ones before buckling,  one can confuse the initial
configuration with the current geometry. Matrices K L  and KQ  can then be neglected. Moreover, the

constraint    can be confused with the usual constraint    ; the equations of buckling are written
then:

[K0 +K  ]u1= 0 éq 1.4.2.2 - 1

It is advisable to notice that the matrix K    is proportional to   and thus with the loading applied
to the structure. If one multiplies the constraint by  , one obtains:

     010  uKK           éq 1.4.2.2 -

2

This equation immediately makes think of a problem generalized with the eigenvalues, of the same
type as in the case of the research of the modes of vibration, which is written:

[K0 -2M] v1= 0 éq 1.4.2.2 - 3

The matrix K    is replaced by the matrix of mass M , and one sees appearing the own pulsation

 , whereas v1  is the associated mode of vibration.

If one wishes to study buckling under a loading of which only a part is controlled (variable part of the
loading),  by a principle of  superposition,  the contribution,  constant,  loading not  controlled must be
added at the end K 0  and only the constraint generated by the controlled loading will be in the term in

 . Formally, the following problem is thus posed:

[K0 +K cte +K  var]u1           

Avec :{ cte  : contrainte générée par le chargement non piloté 
 var : contrainte générée par le chargement piloté

éq 1.4.2.2 - 4

The  two  stress  fields  are  obtained  by  resolution  of  two  linear  problems,  one  for  the  loading  not
controlled, the other for the controlled part of the total loading (cf. [U2.08.04] and [bib17]).

1.4.2.3 Typical case of the imposed forces depend on the geometry

Example of the following pressures:
When the external forces depend on the configuration, that involves that the work of the external forces
intervenes under the stability condition. Let us take the example of a pressure applied to the structure.
This pressure will be supposed to be constant during buckling: in other words, the value of pressure
does not change during displacement.
This assumption corresponds to two types of real problems. The first type is that where the volume of
the fluid  imposing the pressure on the structure is  very large  in  front  of  the variations of  volume
generated  by  the  displacement  of  the  solid.  The  problems  of  pressure  tanks  inboard,  where
displacements of walls are considerable compared to dimensions of the structure itself, thus do not
return within this framework.
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The second case corresponds to the existence of a source of fluid which makes it possible to keep the
pressure with a constant value. It is not then necessary any more to worry about the amplitude of the
displacement of the solid.
The value of pressure being taken fixes, the variation of the normal in the course of time is to be taken
into  account.  This  variation is  due to  the  field  of  displacement  which  modifies  the surface of  the
structure. In the same way, if one reasons in terms of resultant and thus of integral, the element of
surface can also change surface. Consequently, the resultant of the compressive forces will vary and it
is advisable to take account of it.
  
It  is  however  difficult  to  display  the  existence  of  a  potential.  This  is  why  one  is  reduced  to  the
conservative case.

We see quickly that the power of the efforts, expressed on the current configuration, associated with  a
pressure is given by the following equation (see for example [bib11]):

P pression
ext = ∫

∂ SP

p[ n+
dS1

dS
n1] .u*dS éq 1.4.2.3 - 1

In this equation, we notice that the power of the external efforts is modified in displacement u1 . We
will have then:

P1
ext = Pext + ∫

∂SP

pn1 .u*dS1 éq 1.4.2.3 - 2

Finally, the matrix KT  is enriched by an additional term, function of the pressure:

K T =K 0 +K L
u+KQ

u+K +K  p éq 1.4.2.3 - 3

If one writes the operators on the current geometry, one leads to:

K T =K +K  +K  p éq 1.4.2.3 - 4

When we are in the presence of following compressive forces, same methods that those presented
previously will  be able to apply to calculate the buckling loads: it will  be enough to supplement the
matrix  KT  with the new term  K p . One can show that the matrix  K  p  is symmetrical if the
compressive forces do not work on the “edge” of the model.

1.4.2.4 Vibrations under prestressing

Same  methodology  can  also  under  investigation  apply  vibrations  of  the  structure  in  the  current
configuration S . This structure is prestressed and deformed. It is enough to write the Principle of the
Virtual Powers nonlinear geometrical  [éq 1.4.1-7] by taking account as of  effects of inertia and by
injecting the assumption there that displacements are of the periodic functions of the type:

u1 t =v1 sin t  éq 1.4.2.4 - 1
It results from this:

[K0 +K L
u+KQ

u+K  +K  p -2M ]v1 = 0      éq 1.4.2.4 - 2

First of all, we notice, in this equation, that when we have a critical condition then the Eigen frequency
of vibration of the structure corresponding to the mode of buckling is worthless.
Moreover, we observe that the Eigen frequencies of the structure charged are different from those of
the initial structure for two reasons:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part
and is provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Critères de stabilité structurale Date : 12/01/2018 Page : 13/29
Responsable : ABBAS Mickaël Clé : R7.05.01 Révision  :

2ea74c0ebacd

1. The own pulsation   is modified by prestressing p  : it is the principal effect which is used,
for example, to grant a violin. The tension of the cord exploits the height of the corresponding
note, therefore on its Eigen frequency.

2. A  second  effect  is  the  variation  of  the  frequency  by  modification  of  the  geometry:  the

geometrical matrix of starting stiffness 0K  is replaced by the matrix of stiffness on the current

geometry: K 0 +K L +KQ . What causes to modify the vibratory equations.

The  operator  DYNA_NON_LINE allows  to  carry  out  vibratory  analyses  on  the  current  nonlinear
configuration (keyword MODE_VIBR), but without taking into account of prestressing for the moment.

  

1.5 Implementation in the code

In any rigour, in order to make sure of the analysis of stability of a nonlinear quasi-static calculation, it is
necessary to use the criterion of stability ad hoc with each step of incremental calculation. Any criterion
of nonlinear stability must thus be intrinsically the least expensive possible in time CPU and place
memory.
Speaking Algorithmiquement, it appears judicious to establish the call to the criterion inside even of the
routine corresponding to the operator  STAT_NON_LINE [bib15]. Indeed, the principle of call to each
step puts up badly with a completely outsourced call to the incremental method of resolution of the
nonlinear mechanical problem.

1.6 Criterion of Euler

This criterion (cf [§ 1.4.2.2]) requires only the resolution of a linear static problem, then the construction
and the assembly of the geometrical matrix of stiffness. This one and stamps it assembled stiffness are
then to pass like argument of a solvor [bib12] for the problem to the eigenvalues [éq 1.4.2.2 - 2].

At exit one thus recovers the modes of buckling and the critical loads corresponding. For more details,
the user will be able usefully to consult the document [U2.08.04] [bib17].
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1.7 Nonlinear criterion

1.7.1 Impact on the operator STAT_NON_LINE

Let us start by briefly pointing out the operation of the incremental method of resolution of the nonlinear
problems of structure [bib15].

1.7.1.1 Algorithm of STAT_NON_LINE

The index will be used I (like “moment”) to note the number of an increment of load and the exhibitor N
(like “Newton”) to note the number of the iteration of Newton in progress. The algorithm used in the
operator STAT_NON_LINE can then be written schematically in the following way:

u0 , 0  and 0  known

Buckle over moments t i  (or increments of load): loading Li =Lt i

• ui - 1 ,i -1  known

• Prediction: calculation of  ui
0  and  i

0

• Buckle on iterations of Newton: calculation of a continuation  ui
n , i

n


• ui
n ,i

n
  and   ui

n , i
n
  known

• Calculation of the matrices and vectors associated with the following loads
• Expression of the relation of behavior

• calculation of the constraints  i
n  and of the internal variables i

n  starting from

the values  l -1  and  l -1  with preceding balance ( t i -1 ) and of the increment of

displacement  u i
n=u i

n -ui - 1  since this balance

• calculation of the “nodal forces”: QT
 i

n +BT
i
n

• possible calculation of the matrix of tangent stiffness: K i
n =K ui

n


• Calculation of the direction of research   ui
n +1 , i

n+1
  by resolution of a linear

system
• Iterations of linear research: 
• Actualization of the variables and their increments:

 {ui
n+1 = ui

n +  ui
n+ 1

 i
n+ 1= i

n + i
n+ 1 et { u i

n+ 1 = ui
n + ui

n+ 1

 i
n+ 1 =i

n +  i
n+ 1  

• Test of convergence
• Filing of the results at the moment t i
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 {
ui = ui -1 +  ui

i =i -1 +  i

 i

i

 

 
It is noticed that there are three levels of overlapping loops: a loop external on the steps of time, a loop
of iterations (qualified the total ones) of Newton and possible subloops for linear research (if she is
asked by the user) and certain relations of behavior requiring of the iterations (known as interns), for
example for elastoplasticity in plane constraints.

If one chooses the criterion based on the assembled tangent matrix, it is necessary to have this matrix
reactualized for each step where one wants to analyze stability.
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It is the case when one uses a method of the Newton type, and not a modified method of the Newton
type.

One leads then to the following algorithm:

u0 ,0  and 0  known

Buckle over moments t i  (or increments of load): loading Li =Lt i

• ui - 1 ,i -1  known

• Prediction: calculation of  ui
0  and  i

0

• Buckle on iterations of Newton: calculation of a continuation  ui
n , i

n


• ui
n ,i

n
  and  ui

n , i
n
  known

• Calculation of the matrices and vectors associated with the following loads
• Expression of the relation of behavior

• calculation of the constraints  i
n  and of the internal variables i

n  starting from

the values  l -1  and l -1  with preceding balance ( t i -1 ) and of the increment of

displacement  u i
n=u i

n -ui - 1  since this balance

• calculation of the “nodal forces”: QT
 i

n +BT
i
n

• possible calculation of the matrix of tangent stiffness: K i
n =K ui

n


• Calculation of the direction of research   ui
n +1 , i

n+1
  by resolution of a linear

system
• Iterations of linear research: 
• Actualization of the variables and their increments:

 {ui
n+1 = ui

n +  ui
n+ 1

 i
n+ 1= i

n + i
n+ 1 et { u i

n+ 1 = ui
n + ui

n+ 1

 i
n+ 1 =i

n +  i
n+ 1  

• Test of convergence
• Filing of the results at the moment t i

 {
ui = ui -1 +  ui

i =i -1 +  i

 i

i

 

• Criterion of stability, function of the reactualized tangent stiffness: K i
n =K ui

n


The criterion  is  calculated  at  the  end  of  the step,  just  after  filing.  It  thus  has like  arguments the
quantities converged with the current step. Moreover, this choice of position of call makes it possible to
take account correctly following loadings, since their calculation is done at the time of the iterations of
Newton. The criterion could not thus be called before the end of these iterations.

1.7.1.2 Impact on the structure of data result of STAT_NON_LINE

The call of the nonlinear criterion of stability will induce the resolution of a problem to the eigenvalues.
The result of this calculation will be thus a set of couples critical load/mode of buckling.
The critical loads are scalars and the associated modes are fields of displacement, which will come to
enrich the structure of data result by STAT_NON_LINE.
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1.7.2 Characteristics related to the tensor of deformation

In the code, it is advisable to distinguish two large families from description of the deformations.

On the one hand the linearized tensor corresponds to the case of the small disturbances (argument
SMALL keyword  DEFORMATION),  but  also  with  the  case  of  the  small  disturbances  reactualized
(Lagrangian reactualized with each step of incremental calculation: argument  PETIT_REAC keyword
DEFORMATION).

The tensor of deformation is written then (like [éq 1.3-3]):

 =
1
2

∇ u+ ∇
T u  éq 1.7.2-1

The use of PETIT_REAC imply a resolution of the balance of the structure on its current geometry with
a tensor of deformations linearized. One thus calculates the increment of deformation compared to the
position X , with displacement u  and with the increment of displacement  u  in the following way:

 ij =
1
2  ∂ ui

∂ X + u  j

+
∂ u j

∂ X + ui  éq 1.7.2-2

In addition, the code proposes tensors of deformation of the Green-Lagrange type (GROT_GDEP) for
the treatment of great displacements (and the rotations finished for certain elements of structure) but
under assumption of small deformations. The tensor used is the following classical tensor [éq 1.4.1-5]:

ij u=
1
2

 u i , j + u j ,i = uk , i uk , j  éq 1.7.2-3

The keyword GROT_GDEP applies to modelings beam, hull or 3D.

Lastly, the framework of modeling in great transformations most complete accessible in  Code_Aster is
resulting from the theory of Simo and corresponds to the keyword SIMO_MIEHE. He takes into account
great rotations and the great deformations since the law of behavior is written in great deformations.
For more precise details  on the basic  differences between the various  types of  deformations,  the
documentation [bib16] of Code_Aster present in detail modeling SIMO_MIEHE.

Code_Aster does not allow calculations in configuration eulerienne: as with the tensor of Almansi, for
example. All the tensors of deformation available are of Lagrangian type.

The basic difference, as for the writing of the criterion, is between the linearized deformations (SMALL
and PETIT_REAC) and deformations GROT_GDEP and SIMO_MIEHE. 
Indeed, Code_Aster need has to make its search for balance of the tangent matrix. This one is written
according to the equation ([§ 2.2.2.1] of documentation on STAT_NON_LINE [bib15]):

KT =QT :
∂

∂u
+

∂QT

∂u
: éq 1.7.2-4

However, QT :
∂

∂u
 corresponds at the end classic of material rigidity and 

∂QT

∂u
:  corresponds at

the end of  geometrical  rigidity  which is  present  only  in  great  displacements.  Thus the criterion of
buckling  (formally  assimilable  to [éq  1.4.2.2  -  2]):  K +K  = 0  is  valid  only  in  small
deformations, since the geometrical term of rigidity is regarded as negligible in the tangent matrix. One
then can, with reason, to make a classical research of the eigenvalues and clean vectors of standard
buckling of Euler.

   

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part
and is provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Critères de stabilité structurale Date : 12/01/2018 Page : 18/29
Responsable : ABBAS Mickaël Clé : R7.05.01 Révision  :

2ea74c0ebacd

On the other hand in great  transformation,  the evaluation of  this  criterion by the same method is
problematic for two reasons: on the one hand, in the tangent matrix, the geometrical term of rigidity  is
already calculated and, on the other hand, the matrix K    that it would possibly be necessary to
add is obtained under Code_Aster in small deformations. For these reasons, it is necessary to evaluate
in a way different the criterion according to the type of tensor of deformation requested by the user.

If  one  made  the  choice  of  a  description  eulerienne,  the  development  of  a  criterion  of  the  type
reactualized Euler would be facilitated on the level of the calculation of the term K   , whatever the
tensor of deformation.

1.7.2.1 In linearized deformations: SMALL and PETIT_REAC

As  we  said  previously,  this  case  does  not  pose  major  problems.  It  is  enough  to  calculate  the
geometrical matrix of rigidity and to make a classical search for modes and eigenvalues, of type Euler
[éq 1.4.2.2 - 2]:

K +K   = 0 éq 1.7.2.1 - 1

K  is the tangent matrix reactualized at the end of the step of time.
In this case, one can thus speak indeed about criterion of the type reactualized Euler.
As one is  in small  deformations,  the matrix of  geometrical  rigidities is  proportional  to  the loading.
Therefore, when the critical coefficient is obtained  , it is enough to multiply it by the real load with the
step of current time to obtain the critical load of buckling. The case = 1  thus corresponds to the loss
of stability.
Certain finite elements like the hulls  DKT do not  allow the calculation of  the geometrical  matrix  of
rigidity, contrary to the elements of the type COQUE_3D, for example.

1.7.2.2 In great displacements: GROT_GDEP and SIMO_MIEHE

The classical method does not apply any more in this case. Indeed, Code_Aster calculate like tangent
matrix the matrix of material rigidity plus the geometrical matrix of rigidity (and possibly, the contribution
due to the following pressures).
One in the manners of checking buckling then is to only make a research of the eigenvalues of the
tangent matrix. If one of the eigenvalues is negative, it is that the matrix became singular and that an
instability occurred between the moment when all its eigenvalues were positive and moment when one
of it became negative.
The problem to be treated is thus slightly different since in the case as of small deformations (SMALL
and PETIT_REAC), there is the following system to solve [éq 1.7.2.1 - 1]: , K + I  = 0  whereas in
the case GROT_GDEP and SIMO_MIEHE it is necessary to solve:

K + I = 0 éq 1.7.2.2 - 1

With I  who is the matrix identity and   is, this time, of physical size equivalent to K , whereas in the
case as of small deformations, the eigenvalue   is adimensional (from where its direct interpretation
as a multiplying coefficient of the loading).

One of  the defects inherent  in this method compared to more classical  research explained higher
[§1.4.2] is that one can have forecasts of buckling only when one approaches “close” the critical load,
even when one exceeds it. Far from this load, the first found eigenvalue does not have really physical
meaning since nonlinearities can appear between the step running and the calculated critical load. The
coefficient report criticizes on load at the moment i  is thus different from that at the moment  i +1
whereas in small deformations this report remains constant.
Moreover, for all the steps of time, all the eigenvalues and clean vectors except lowest do not have any
physical meaning since, for a clean couple vector eigenvalue Vi ,i , one a:

K u+K  Vi = iVi éq 1.7.2.2 - 2
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This has clear direction only as from the moment when i0 , in which case one finds the critical
load and the clean vector criticizes associated.
Always compared to criterion of Euler (reactualized [éq 3.2.2.1 - 1] or not [éq 2.3.2.2 - 2]), one notices
that the eigenvalue of the problem [éq 1.7.2.2 - 1]: K + I = 0  is not adimensionnée. It results
from this a greater difficulty from interpretation as for knowing if the value is “small” or not. In other
words, when can one say that one is close to a junction?
To define a relevant interval and of use general, in order to limit the vicinity of an instability, it would be
interesting of adimensionner the eigenvalues.

1.7.2.3 Case of mixed modelings

Like Code_Aster allows to assign several types of deformations to the same structure, it is necessary
to consider the case where one uses several types of tensors of deformation in same calculation.
The differentiation of the various elementary matrices being of no utility, it is appropriate to be solved to
slice at the total level  between a method or the other. One chose to extract the values and clean
vectors from the tangent matrix without adding geometrical matrices of stiffnesses. All occurs as if the
structure  were  in  deformation of  the Green-Lagrange type from the  point  of  view of  the  criterion.
Indeed, let us consider an unspecified solid made up of two parts I and II. On part I, the tensor of
deformation which was adopted is the linearized tensor SMALL and on part II that of Green - Lagrange.
The tangent matrix resulting from the assembly of the two submatrices becomes: 

[
K I * 0
* * *
0 * K II +K II  ] éq 1.7.2.3 - 1

The spangled terms represent the nodes common to both parts and are thus a linear combination of
the values of the two matrices. In this configuration, it appears that none the solutions is satisfactory
but  that  less  penalizing  a  search  for  “type  Green  - Lagrange”  [§ is  to  make1.7.2.2]  i.e.  to  use
K + I = 0  [éq 1.7.2.2 - 1].

This solution not being exact but nevertheless the only able one to be carried out simply, it is envisaged
to add a message of alarm informing the user whom the got results are not guaranteed due to the
juxtaposition of several types of tensors of deformations.

1.7.3 Improvement of the performances of the criterion

During resolution incremental of problem quasi-static nonlinear, in ideal and if it is admitted that the
discretization in time is sufficiently fine, he would be necessary to make an analysis of stability to each
step  of  calculation.  With each  step,  that  induces the  resolution  of  a  problem to  the  eigenvalues,
certainly limited in search of some modes. The analysis of stability thus brings an important overcost
CPU, with a nonlinear calculation already being able to be long.

The idea is to call on the resolution of a problem to the eigenvalues only when it is really necessary,
therefore when the current configuration is “close” to an instability. If one can define this vicinity by a
preset interval, then one can call on a test of Sturm [bib12].
This test makes it possible to know if there exists at least an eigenvalue on the interval of research. In
the affirmative, one will be able to then carry out modal research. In the contrary case, one continues
the quasi-static incremental resolution, without solving problem with the eigenvalues.
The cost of a test of Sturm is notably lower than the cost of research of the critical loads.
The interval of research for the test of Sturm can, either to be given by the user, or to have a value by
default in the code.

In the case of a criterion of Euler reactualized (case of the small deformations [§1.7.2.1]), where the
problem to be solved is written: K +K   = 0  [éq 1.7.2.1 - 1], the interval of research must be
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centered on the eigenvalue =1  (which corresponds to value -1 for the algorithm of CALC_MODES,
because he solves in fact a problem of the type: K  = K   )).
  
The terminals of the interval are the terminals of the multiplying coefficient of the loading, therefore
adimensional quantities, which are function of the safety coefficients and the evaluation of uncertainties
for the problem given. The test of Sturm is implemented within this framework.
In  the  specific  case  adapted  to  the  tensor  of  Green-Lagrange  [§1.7.2.2],  where  one  solves:
K + I = 0  [éq 1.7.2.2 - 1], the interval is centered on 0. Moreover, the terminals of the interval of

test,  contrary to the preceding case,  are not  adimensionnées [§1.7.2.2].  It  is  thus more difficult  to
identify relevant  and general  values (for the case of  the default  values).  The test  of  Sturm is  not
currently established for this case.

1.8 Generalization with dynamics

We will not approach here the framework of the criteria of dynamic instability (negative damping…). It
is  just  a question of  announcing that  the nonlinear  criterion presented here can completely  apply
directly in nonlinear dynamics. It  will  then detect any potential  buckling of the structure,  within the
meaning of the singularity of the total matrix of reactualized tangent stiffness.
In order to be exhaustive in terms of analysis of stability on a nonlinear dynamic study, the user should
use two criteria:

• a criterion of buckling (criterion on the stiffness),
• a dynamic criterion (criterion on damping or the total quadratic linearized problem [bib14], for
example).

For the moment, the criterion of buckling on the stiffness (identical to that of STAT_NON_LINE) is only
available in DYNA_NON_LINE.

Modeling coupled fluid-structure (U, p,F) [R4.02.02], which is available in DYNA_NON_LINE, requires
some  adaptations  of  use  of  the  non-linear  criterion  of  stability.  Indeed,  this  coupled  formulation
generates a matrix of intrinsically singular stiffness total assembled on all the fluid degrees of freedom,
which makes it incompatible with the research method of eigenvalues used for the analysis of stability.
One can however circumvent the problem by correcting the problem assembled (matrix of stiffness and
geometrical stiffness if need be) thanks to the use of two specific keywords. The analysis of stability
relates then to the degrees of freedom structures alone.

   

1.9 Validation of the developments

The cases tests of validation are: SSNL126 and SSLL105D.
More precisely, the cases tests SSNL126 treat the case of a beam fixed at  an end and subjected to a
compression at the other end. Modeling is three-dimensional, with elastoplastic relation of behaviour
to linear isotropic work hardening. Two representations kinematics are presented:

• modeling a: linearized deformations,
• modeling b: deformations of Green-lagrange.

The case test SSLL105D is based on a problem of beam in L , of which one studies elastic buckling.
The finite elements are of standard beam.

1.10 Extension of the criterion of buckling to Traitement elastoplastic 
behavior

Far  from any  exhaustiveness,  we  will  present  only  the  simplest  approaches  here,  for  their  easy
establishment in the code.
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When the structure functions in an elastoplastic mode, buckling is affected by the loss of resistance
due  to  plasticity  [bib2].  The  modification  comes  from  the  relation  of  behavior  during  additional
displacement u1 .
The constraint becomes, in incremental form:

1=  + CT [  Lu+ Q u ,u]+ 
2

2
CT  Q u1 ,u1              1.11-1

In this expression, the matrix of behavior is the tangent matrix  CT . The choice of this matrix is not

immediate:  indeed,  the matrix  depends on  u1  and is  thus  not  known as  long as  the mode is
unknown. One can, for example, to discharge during buckling if the mode develops in a direction and to
charge if  it  develops in the opposite direction. It  is thus necessary to make an assumption for the
behavior during plastic buckling. To start, we will apply the assumption of Hill [bib4] who leaves the
principle that the structure continues to plastically charge during buckling.

Let us consider an elastoplastic law of type Von Mises. We define the three modules: E  who is the

Young modulus, ET  the tangent module, and the secant module. These modules are recalled on the
following figure:

 

Figure 1.11.5-a: Representation of the various modules on a traction diagram 1D

  
Then we propose three possible methodologies.

The assumption of the tangent module simply consists in replacing the Young modulus by the tangent
module in the relation of behavior. One obtains then:

                                                                    CT =
E
ET

C                    1.11-2

This method is very rudimentary, but it is always pessimistic, which can constitute an advantage, if one
places oneself from the point of view of dimensioning.

The method used usually  consists in using the tangent matrix of incremental  calculation (operator
STAT_NON_LINE [bib15]). We thus have the following equation in the case of the plasticity of Von
Mises [bib16]:
 

                                                      
CT =C[ I -

A [
D
⊗

DT
]AC

h+

DT

AA
D

∥
D
∥VM

]   
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Avec {

D : vecteur déviateur des contraintes 

A : matrice intervenant dans la norme de VonMises ∥D
∥VM =  DTA

D 

h :pente plastique définie par h=
E . ET

E - ET

1.11-3

         
This method is perfectly rigorous only in nonlinear elasticity or if the assumption of Hill is respected:  it
does not make it possible to predict the junctions in the ways of loading. As soon as the relation of
behavior is dissipative (see chapter  2), the critical loads calculated will not be exact that if one can
check that the loading is monotonous, in any point of the structure (Hill [bib4]).

The most realistic method consists in using the theory finished of the deformation only to calculate the
load of plastic buckling. The tangent matrix of behavior is given by the equation below:

CT = [ 1
ET

-
1
ES

 A [
D
⊗

DT
]A

∥
D
∥VM

+C-1 +  1
ES

-
1
E A ]

- 1

               1.11-4

Compared to the method based on the matrix of tangent stiffness [éq 1.11-3], this criterion requires the
construction and the assembly of a specific total matrix.  This expensive operation comes to weigh
down the incremental resolution.

For  considerations  of  general  information  and  minimization  of  the  development  cost  and  cost  of
calculation (CPU and memory), we thus choose the criterion based on the tangent module [éq 1.11-3].

  

1.11 Conclusion

Code_Aster offer two criteria of stability, within the meaning of buckling, for the structural analyses:

1. On the one hand, whenever a linearized approach is enough, one can apply a criterion of the
type Euler ([bib13]  and [bib18]),  by call  to an operator  of  resolution of  the problem to the
eigenvalues generalized (CALC_MODES with the keyword TYPE_RESU=' MODE_FLAMB').

2. In addition, for all the cases where it is essential to take account of nonthe linearities, which
they to the relation of behavior or the great transformations, the user is due can employ an
adapted  criterion,  of  type  generalized  Euler.  The  call  of  this  criterion  is  done  during  the
incremental resolution of the quasi-static problem (operator STAT_NON_LINE
 [bib15]).

 
With each step of time, the criterion is based on the resolution of a problem to the eigenvalues [bib13]
on the matrices of brought up to date total stiffnesses. This criterion, which is declined in two different
forms, according to the tensor of deformation chosen, is based on a linearization around the step of
current calculation. It accepts any type of tensor of deformation, as any type of relation of behavior for
which one is able to build the matrix of total stiffness, at every moment. Moreover, the selected criterion
is perfectly rigorous in the case of the relations of nonlinear elastic behavior, and can be wide with the
case of elastoplasticity associated with the assumption with Hill [bib4].
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2 Stability of a dissipative system

2.1 Definition of the stability of a dissipative system

When one is interested in dissipative phenomena (case of plastic or fragile materials…) one adds in
the expression of total energy Φ a term representing the dissipated part. Irreversible degradations are
then associated with quantities, generally scalar, like the damage or plasticity. The criterion of buckling
presented previously does not take account of the irreversibility. It is sufficient but nonnecessary to
justify stability  [bib19].  When the criterion of  buckling is  reached, the unicity of the solution is not
guaranteed any more, but one cannot conclude directly on stability. One notes U the variable of drifting
state of the reversible part of energy and α the variable of drifting state of the irreversible part of the
studied mechanical phenomenon. The criterion of stability then consists in checking the positivity of the
derivative second of energy in the direction of the increase in variable  α [bib20]. Let us consider an
acceptable disturbance (ν,B≥0). The criterion of stability then amounts checking that one always finds
the inequality:

                              u ,≤uv ,b   éq 2 .1 - 1 

  From the mathematical point of view, that amounts checking that the function  Φ carry out a local
minimum in ( U , α ). 

  One is interested more particularly in the case of the models of damage. One considers ( U , α ), one 
 state structure Ω  checking balance: 

  

  ∀ v∈C 0 ,∫
 ∂

∂ u
u ,. v dx=0  éq 2 .1 -

2 

and the criterion of damage, taking account of the irreversibility of the variable of state α: 
  

  
∂
∂

u ,≥0 et ∀∈C 0
≥0,∫

 ∂
∂

u ,.dx=0  éq 2 .1 -

3 
   

  O N obtains quickly, with a development of Taylor to order 2 [bib20], equivalence between 
criterion 2 .1-1  and the following criterion, writing on the derivative second of Φ: 
  

            D2
u ,≥0                        éq 2 .1 -

4 

  where D 2 is the operator of derived second. 

2.2 Écriture within the framework of the finite element method

From the point of view of the finite elements and by preserving the preceding notations, this criterion is
written like the positivity of the quotient of Rayleigh under constraints of inequalities according to:

∀v , b≥0≠0 , Q rc=
v , bt .K T

v , b

v , bT .v , b
≥0

   éq 2 . 2 - 1 

The most classical way to check that a function is positive consists in calculating its minimum and
making sure of its positivity. One presents in the part which follows, the algorithm of minimization under
constraints of inequalities programmed in Code_Aster. 
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2.3 Algorithm of optimization under constraints of inequalities

Among the algorithms available in the literature, that which proved to be most robust and also simplest
to program is the method of the powers, to which one adds, with each iteration, the projection of the
degrees of  freedom  b  on the whole  of  the positive  values,  kind to  check the imposed unilateral
constraint [bib21]. The algorithm is built in two stages, in the following way: 

1. The method of the powers is very much used in mathematics applied for the research of the
maximum eigenvalues of a matrix M  . A shift on the greatest eigenvalue λ m   : NR = λ m I D - M
then allows to carry out the research of the smallest clean modes. One presents below the
algorithm  in  his  initial  form.  Maybe,  in  the  form  used  for  the  research  of  the  maximum
eigenvalue of a symmetrical matrix A: 

              

Soit P  la projection d'un vecteur sur sa partie positive.
Initalisation : v , b≥0

0
/∥v , b≥0

0
∥=1 .

Pour k≥1  Faire : 
   w ,c=A v ,b k−1 ,

   v , bk=w ,P c   ,

   v , bk=v ,bk /∥ v ,bk∥

   Si : ∥v , bk− v ,bk−1∥  alors Fin

   Sinon : k=k1
   Fin Si
Fin Pour

Figure 2.3-a: Diagram of the algorithm of research of the maximum under constraint for a matrix  With 

 

 

2. Its limit of reliability is at the neighbourhoods of the thousand of degrees of freedom. To free
themselves from this limit and to be able to deal with industrial problems, one uses the method
of reduction available in Sorensen [bib22], who consists in projecting the problem on a basis
made up of N smaller clean modes of the structure. By taking account of this stage one récrit
the algorithm in the following way, where K is always the tangent operator, Q is the operator of
projection and BN projection in reduced space : 

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part
and is provided as a convenience.
Copyright 2021 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Critères de stabilité structurale Date : 12/01/2018 Page : 25/29
Responsable : ABBAS Mickaël Clé : R7.05.01 Révision  :

2ea74c0ebacd

         

Réduction : K T
=QT BnQ

Initialisation :  v ,b≥00 ;  z0=Q  v ,b0 /Q∥ v ,b0∥=1,

Pour k≥1  Faire : 
   w ,c=QT Bn z k−1 ,

   v , b
k
=w ,P c   ,

   z k=Q v , bk ,

   z k=zk /∥z k∥

   Si : ∥zk−zk−1∥  alors Fin 

   Sinon déflation
   Fin si
Fin pour

Figure 2.3-b: Diagram of the algorithm of search for maximum under constraints of inequality with
method of projection 

2.4 Implementation in the code

The study of stability is started with the call of the order CRIT_STAB of the operator STAT_NON_LINE,
under the condition  TYPE = ‘STABILITY’. Sizes, or degrees of freedom, checking the unilateral
condition of irreversibility are declared in a list DDL_STAB= (”,”,…).

2.5 Example of application: Case of the bar in uniform traction

Principal  the  case  of  reference  found  in  the  bibliography  is  the  study  of  the  stability  of  the
homogeneous solution of a bar damaged under the effect of a uniform loading of traction [bib23]:

 

Figure 2 . 5 - has : Representation of the bar in uniform traction 

2.5.1 Analytical results of stability
  

It is shown [bib23] that there exist two types of solutions to the studied problem: 
● The homogeneous solution, uniformly damaged.
● The localised solutions which concentrate the damage of the bar on a precise zone. 
The study of stability of the homogeneous solution thus amounts checking that the reached energy
levels, by considering small disturbances of the solution having the form of a localization, are always
higher than that obtained starting from the homogeneous solution.

 
On the basis of the following formulation in gradient of damage of energy [bib24]:

    ϕ=∫
 (1

2
(1−α )

2
E0(u)

2
+
M

2

E0

α+
E0 l2

2
∇ α . ∇ α)dx        éq 2.5.1 - 1 
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the comparison of the energy levels then makes it  possible to plot  the diagram of  stability of  the
homogeneous solution according to the relationship between the length of the bar L, the length interns
model L and of  loading applied UT [bib23]: 

 

Figure 2 . 5 . 1 has : Analytical diagram of stability of the bar in traction 

2.5.2 Results of stability got with Code_Aster
  

By using the algorithm of optimization developed in the code (2.3), one finds a diagram of stability
similar to 5% near on the loading from which instability is detected [bib25] : 

 

Figure 2 . 5 . 2 has : Diagram of stability of the bar in traction obtained with Code_Aster 

 

Parametric studies on the influence amongst calculated Eigen frequencies and on which one rests for
the study of stability shows that it is necessary to take it about thirty for discretized problems with more
or less 100,000 ddls but that it becomes important to consider of it a good hundred for the problems of
larger sizes. What involves more important costs of calculation CPU, the algorithm being greedy in
time. This is why it  is  really started only when the study of  buckling shows that  the unicity of  the
solution is not assured any more. 
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When the  algorithm  shows  that  the  criterion  of  stability  is  not  checked  any  more  (  CHAR_STAB
negative) , the vector minimizing the quotient of Rayleigh (éq 2.2-1) is called direction of instability. One
finds it like result under the nomination MODE_STAB (by analogy with MODE_FLAMB for the criterion of
buckling) .  The disturbance of the current solution by this direction of instability destabilizes it  and
makes it possible to fork towards a stable solution. In the example presented here, the direction of
instability is the localis ation of the damage on one of the two ends of the bar. 

2.6 Conclusion

Code_Aster allows to carry out studies of stability on dissipative problems such as the problems of
plasticity or damage. The algorithm used is based on the method of the powers to which the projection
of the degrees of freedom is added, in space respecting the unilateral constraints of irreversibility. Its
application is really put in work only when the criterion of unicity is violated. In the contrary case, unicity
is sufficient to guarantee stability. If one detects with a step of time of calculation finite elements the
loss of stability of the solution, the algorithm provides the direction to be added like disturbance to find
a stable forked solution. 
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