Operator `DEFI_PROP_ALEA`

1 Goal

This operator allows to define random fields to take into account the space variability of the properties mechanics as the Young modulus (by exEmple of the ground or the concrete). The operator builds analytical expressions of the random fields by decomposition of Karhunen-Loeve. The fields follow a lognormal law and are defined by the lengths of correlation in the 1.2 or 3 directions of space, the median and the coefficient of variation. In addition, it is necessary to inform the size of the field (bounding volume) and the number of terms to be retained. One can generate fields 1D (process), 2D or 3D.

`DEFI_PROP_RISK` product a formula whose parameters are X and/or Y and/or Z according to the data who can be transmitted as parameters material to `DEFI_MATERIAU`.

Product a concept of the type `formula`.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
2 Syntax

field [formula] = DEFI_PROP_ALEA {
 ♦ INIT_ALEA = nor [I]
 ♦ MEDIÀN = med [R]
 ♦ COEF_VARI = Co [R]
 ♦ | LONG_CORR_X = Lcx [R]
 ♦ X_MINI = xmin [R]
 ♦ X_MAXI = xmax [R]
 ♦ NB_TERM_X = / Nbt [I]
 | LONG_CORR_Y = Lcy [R]
 ♦ Y_MINI = ymin [R]
 ♦ Y_MAXI = ymax [R]
 ♦ NB_TERM_Y = / Nbt [I]
 | LONG_CORR_Z = Lcz [R]
 ♦ Z_MINI = zmin [R]
 ♦ Z_MAXI = zmax [R]
 ♦ NB_TERM_Y = / Nbt [I]
}

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3 Operands

3.1 Keyword INIT_ALEA

♦ INIT_ALEA = nor [I]

Keyword INIT_ALEA initializes the germ of the random continuations used to define the random fields. Two consecutive calculations with the same initialization produce the same result.

3.2 Keyword MEDIAN

♦ MEDIAN = med [R]

Keyword to define the median value of the lognormal random field. In general, the median value EST associated with the value best-estimate.

3.3 Keyword COEF_VARI

♦ COEF_VARI = cov [R]

Keyword to define the coefficient of variation of the random fields. The coefficient of variation is defined like the relationship between the standard deviation and the average of the random field. In the case of fields of lognormal laws, the standard deviation logarithmic curve β is related to the coefficient of variation by the formula $\text{cov} = \sqrt{\exp(\beta^2) - 1}$.

3.4 WordS- keyS LONG_CORR_X, LONG_CORR_Y and LONG_CORR_Z

♦ | LONG_CORR_X = LcX [R]
| LONG_CORR_Y = LcY [R]
| LONG_CORR_Z = LcZ [R]

Keyword to define the length of correlation of the random fields according to the direction X (so well informed).

The definition lengths of correlation is that of Vanmarcke: $L_c = \int_{-\infty}^{+\infty} R(u) du$ where $R(u)$ is the function of correlation for the variable u (here: the distance according to the direction X).

The function of correlation is exponential simple $R(u) = \exp(-u/0.5L_c)$ according to each direction.

LONG_CORR_Y and LONG_CORR_Z are similar to those of LONG_CORR_X for the directions Y and Z.

3.5 WordS- keyS NB_TERM_X, X_MINI and X_MAXI

Cbe wordS- keyS are obligatory if LONG_CORR_X is well informed.

♦ NB_TERM_X = Nbt [I]

The number of terms to be retained for the decomposition of Karhunen-Loève according to the direction X. The number of terms defines the number of function clean and thus the small fluctuations of the variable parameter. As the random field is generated on unit fields $[0,1]$, it is necessary to choose the number of terms per report the size of the field and the discretization. Failing this, it is recommended to take Nbt equalize with the extension of the field (here xmax-xmin).

♦ X_MINI = xmin [I]
The coordinate \(\text{min} \) according to the extension of the field in direction \(X \).

\[
\text{X_MAXI} = \text{xmax} \quad [I]
\]

The coordinate \(\text{max} \) according to the extension of the field in direction \(X \).

Both last wordS- keyS allow to define the extension of the field on which one must generate the random fields (\textit{bounding volume}).

3.6 Word S - key S \text{NBTERM}_Y, \text{Y_MINI} \text{and} \text{Y_MAXI}

These word S - key S are obligatory if \text{LONGCORR}_Y is informed.

3.7 Word S - key S \text{NBTERM}_Z, \text{Z_MINI} \text{and} \text{Z_MAXI}

These word S - key S are obligatory if \text{LONGCORR}_Z is informed.

4 Examples

One can consult the case test zzzz100g [v1.01.100].