Operator CALC_MODE_ROTATION

1 Goal

To calculate the modes and the frequencies of the system following according to the number of revolutions,

\[M \ddot{\delta} + (C + \Omega G) \dot{\delta} + K \delta = 0 \]

Where \(M \) is the matrix of mass of the system, \(C \) is a matrix of damping, \(G \) is the matrix of gyroscopy (antisymmetric), and \(K \) is the matrix of stiffness of the system. \(\Omega \) represent the number of revolutions.

The data necessary for this macro are:

1) matrices: \(K \), \(C \), \(G \) and \(M \)
2) A list number of revolutions

This operator returns a list of concept mode_meca_c: a concept for each number of revolutions. She calls on the order CALC_MODES.
2 Syntax

CALC_MODE_ROTATION (
 # Matrix of rigidity
 ♦ MATR_RIGI = K [matr_asse_depl_r]
 # Matrix masses
 ♦ MATR_MASS = M [matr_asse_depl_r]
 # Matrix damping
 ♦ MATR_AMOR = C [matr_asse_depl_r]
 # Gyroscopic matrix
 ♦ MATR_GYRO = G [matr_asse_depl_r]
 # List number of revolutions
 ♦ VITE_ROTA = List [R]
 # Choice of the method
 ♦ METHOD = / 'QZ' [DEFECT]
 / 'SORENSEN'
 # Type of modal calculation
 CALC_FREQ = _F (
 ♦ OPTION = / 'CENTER'
 ♦ PLUS_PETITE' [DEFECT]
 ♦ NMAX_FREQ = nbF [I]
 ♦ SEUIL_FREQ = /1.E-2 [DEFECT]
 /f_seuil [R]
)
 # For final checks
 VERI_MODE = _F (
 ♦ STOP_ERREUR = / 'YES' [DEFECT]
 ♦ 'NOT'
 ♦ THRESHOLD = / 1.E-6 [DEFECT]
 / R [R]
 ♦ PREC_SHIFT = / 0.05 [DEFECT]
 / prs [R]
 ♦ STURM = / 'YES' [DEFECT]
 / 'NOT'
);
3 Operands

3.1 Operands

They have the same meaning as in the order `CALC_MODES` [U4.52.02].

Note: Because of presence of the matrices of damping and gyroscopy, only methods QZ and SORENSEN are usable.

3.2 Keyword `CALC_FREQ`

Play the same part as in the order `CALC_MODES` [U4.52.02], has the same internal keywords with the same values by default.

Note: The number of modes n_bF is the same one for all the number of revolutions.

3.3 Operand `VITE_ROTA`

List number of revolutions Ω in rad/s.

3.4 Operand `Keyword VERI_MODE`

The internal operands have the same meaning as in of the same keyword name of order `CALC_MODES` [U4.52.02].

4 Example

```bash
# Calculation of the first 5 modes in rotation by using the method QZ:
Lmod=CALC_MODE_ROTATIONR (MATR_RIGI = RIGIDITY,
MATR_MASS = MASS,
MATR_AMOR=AMOR,
MATR_GYRO =GYASS,
VITE_ROTA=LI_VITROT,
METHOD = 'QZ',
CALC_FREQ= F (OPTION=' PLUS_PETITE', NMAX_FREQ=5),
VERI_MODE=_F (STOP_ERREUR=' NON'));

CALC_MODE_ROTATION return a table table_contenor containing the modal bases calculated for each number of revolutions.

mode_meca_c product are named as follows: mod_0,... mod_i. mod_nbV, i is the index number of revolutions in VITE_ROTA.
```