Operator **PRE_SEISME_NONL**

Goal

The purpose of this operator is to simplify the implementation of the method Laplace-Time by allowing the realization of non-linear calculations with impedances produced by MISS3D.

The use of the method Laplace-Time (cf. [U2.06.05]) requires several operations:

1. the calculation of a base of modes of interface necessary for the projection of the impedances obtained with the operator **CALC_MISS** (cf. [U7.03.12]);
2. the creation of a new model which assembles these matrices of impedance, that it is within the framework of a resolution in physical base or with techniques of dynamic reduction (cf. [U2.07.04]);
3. possibly the transition statics-dynamics when a state of prestressed must be taken into account at the beginning of transitory calculation.

According to the arguments as starter, this order allows the realization of the operations mentioned previously, i.e., it makes it possible to produce the concepts necessary to call on the macro-order **CALC_MISS** [U7.03.12] or to exploit of them the results of type calculation of impedance.
Contents

1 Goal
2 Syntax
3 Operands
 3.1 Operand RESULT
 3.1.1 Operand MODEL/GRID/CHAM_MATER/CARA_ELEM
 3.1.2 Operand BASE_MODALE/MACR_ELEM_DYNA
 3.1.3 Operand LOAD
 3.2 Operand PRE_CALC_MISS
 3.2.1 Operand REDUC_DYNA_ISS/REDUC_DYNA_IFS
 3.2.2 Operand NMAX_MODE_ISS/NMAX_MODE_IFS
 3.2.3 Operand GROUP_MA_INTERF
 3.2.4 Operand GROUP_NO_CENT
 3.2.5 Operand CALC_MISS_OPTION
 3.3 Operand POST_CALC_MISS
 3.3.1 Operand MACR_ELEM_DYNA
 3.3.2 Operand GROUP_MA_INTERF
 3.3.3 Operand GROUP_NO_CENT
 3.3.4 Operand UNITE_RESU_RIGI/UNITE_RESU_AMOR/UNITE_RESU_MASS
 3.4 Operand STAT_DYNA
 3.4.1 Operand RESULT
 3.4.2 Operand EXCIT
 3.4.3 Operand BEHAVIOR/CONVERGENCE
 3.4.4 Operand BASE_MODALE
 3.4.5 Operand UNITE_IMPE_TEMPS
 3.4.6 Operand UNITE_IMPE_FREQ
 3.4.7 Operand FORCE_SOL
 3.4.8 Operand COEF_AMOR
 3.4.9 Operand NB_INST
 3.5 Operand AFFE_MODELE
 3.6 Operand AFFE_MATERIAU
 3.7 Operand AFFE_CARA_ELEM
 3.8 Operand AFFE_CHAR_MECA
 3.9 Operand INFORMATION
2 Syntax

PRE_SEISME_NONL (

RESULT = _F (

◊ / RESULT = CO ('resu'), [evol_noli]
◊ / MODEL = CO ('Mo'), [model]
◊ / GRID = CO ('e-mail'), [grid]
◊ / CHAM_MATER = CO ('chmat'), [cham_mater]
◊ / CARA_ELEM = CO ('carac'), [cara_elem]

PRE_CALC_MISS is obligatory for creation of the concepts of the type bases modal or macronutrient
◊ / BASE_MODALE = CO ('bamo'), [mode_meca]
◊ / MACR_ELEM_DYNA = CO ('mael'), [macr_elem_dynai]

POST_CALC_MISS is obligatory for creation of a load with option 'LAPL_TEMPS'
◊ / LOAD = _F (

◊ / NAME = CO ('l_char'), [l_char_meca]
◊ / OPTION = / 'COND_LIM', [DEFECT]
◊ / 'LAPL_TEMPS', [TXM]
),

◊ / PRE_CALC_MISS = _F (

◊ / CALC_MISS_OPTION = / 'ISS', [TXM]
◊ / 'ISFS', [TXM]
◊ / NMAX_MODE_ISS = nbiss, [I]
◊ / NMAX_MODE_IFS = nbifs, [I]
◊ / GROUP_MA_INTERF = grma_int, [grma]
◊ / GROUP_NO_CENT = grno_cent, [grno]
◊ / REDUC_DYNA_ISS = / 'NOT', [DEFECT]
◊ / 'YES', [TXM]
◊ / REDUC_DYNA_IFS = / 'NOT', [DEFECT]
◊ / 'YES', [TXM]
),

◊ / POST_CALC_MISS = _F (

◊ / MACR_ELEM_DYNA = mael, [macr_elem_dynai]
◊ / GROUP_MA_INTERF = grma_int, [grma]
◊ / GROUP_NO_CENT = grno_cent, [grno]
◊ / UNITE_RESU_RIGI = uresrig, [I]
◊ / UNITE_RESU_AMOR = uresamo, [I]
◊ / UNITE_RESU_MAS = uresmas, [I]
),

◊ / STAT_DYNA = _F (

◊ / RESULTAT = resu, [evol_noli]
◊ / EXCIT = _F (

◊ / LOAD = tank, [char_meca]
◊ / FONC_MULT = fonct, [fonction_sdaster]
◊ / TYPE_CHARGE =/'FIXE_CSTE', [DEFECT]
◊ / 'FIXE_PILO', [TXM]
◊ / 'SUIV', [TXM]
◊ / 'DIDI', [TXM]
),

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
BEHAVIOR = F (see the document [U4.51.11]),
CONVERGENCE = _F (see the document [U4.51.03]),
BASE_MODALE = bamo,
UNITE_IMPE_TEMPS = _F {
 UNITE_RESU_RIGI = uresrig,
 UNITE_RESU_AMOR = uresamo,
 UNITE_RESU_MASS = uresmas,
},
UNITE_IMPE_FREQ = uimpfr,
FORC_SOL = fsol,
COEF_AMOR = / 0.0,
 / coefamo,
NB_INST = / 100.0
),

the declaration of the keyword following must be coherent
with the keyword informed in RESULT
AFFE_MODELE = _F (to see the document [U4.41.01]),
AFFE_MATERIAL = _F (see the document [U4.43.03]),
AFFE_CARA_ELEM = _F (see the document [U4.42.01]),
AFFE_CHAR_MECA = _F (see the document [U4.44.01]),
INFORMATION = / 1,
 / 2,
[DEFECT]
[I]
3 Operands

3.1 Operand RESULT

\[
\text{RESULT} = _F(\text{resu}), \quad [\text{evol_noli}]
\]

Allows \texttt{PRE_SEISME_NONL} to produce the concepts at exit of the macro-order.

The keyword \texttt{RESULT} is to be used only with \texttt{STAT_DYNA}.

3.1.1 Operand MODEL/GRID/CHAM_MATER/CARA_ELEM

\[
\begin{align*}
\text{MODEL} & = \text{CO}('Mo'), \quad [\text{model}] \\
\text{GRID} & = \text{CO}('e-mail'), \quad [\text{grid}] \\
\text{CHAM_MATER} & = \text{CO}('chmat'), \quad [\text{cham_mater}] \\
\text{CARA_ELEM} & = \text{CO}('carac'), \quad [\text{cara_elem}]
\end{align*}
\]

Allows \texttt{PRE_SEISME_NONL} to produce the concepts at exit of the macro-order.

The declaration of these concepts must be coherent with the data sunken in the operands \texttt{AFFE_MODELE} (cf. §3.5), \texttt{AFFE_MATERIAU} (cf. §3.6), \texttt{AFFE_CARA_ELEM} (cf. §3.7) and \texttt{AFFE_CHAR_MEEA} (cf. §3.8) defined inside this macro-order.

These keywords make it possible to inform the name of the concepts which the user wishes to create:
- the name of the model (\texttt{Mo}) whose elements are the object of mechanical calculation,
- the name of the grid (\texttt{e-mail}) possibly containing new nodes and meshes,
- the name of the material field (\texttt{chmat}) affected on the grid \texttt{e-mail},
- the name of the characteristics (\texttt{carac}) elements of hull, beam, pipe, bars, cable, and discrete elements affected on the model \texttt{Mo}.

In case of a dynamic reduction (cf. [U2.07.04] and [U4.44.01]), these concepts created will contain the additional elements necessary to later calculations.

3.1.2 Operand BASE_MODALE/MACR_ELEM_DYNA

\[
\begin{align*}
\text{BASE_MODALE} & = \text{CO}('bamo'), \quad [\text{mode_meca}] \\
\text{MACR_ELEM_DYNA} & = \text{CO}('mael'), \quad [\text{macr_elem_dyna}]
\end{align*}
\]

These keywords cannot be used without informing the keyword factor \texttt{PRE_CALC_MISS} (cf. §3.2). Indeed, they make it possible to inform the following concepts at exit:
- the name of the modal base (\texttt{bamo}) containing the modes of interface used as projection of the impedances of ground bases,
- the name of the macronutrient (\texttt{mael}) who points on \texttt{bamo} and which can be directly used in \texttt{CALC_MISS} (cf. [U7.03.12]).

3.1.3 Operand LOAD

\[
\begin{align*}
\text{LOAD} & = _F(\text{\l_char}), \quad [\text{l_char_meca}] \\
\text{NAME} & = \text{CO}('\l_char'), \quad [\text{DEFECT}] \\
\text{OPTION} & = / '\\text{COND_LIM}', / '\\text{LAPL_TEMPS}', / '\\text{TXM}'
\end{align*}
\]

This keyword makes it possible to create a load related to the boundary conditions (\texttt{OPTION = 'COND_LIM'}), obligatory when one seeks to make dynamic reduction, or with the method Laplace-
3.2 Operand **PRE_CALC_MISS**

\[
\text{\textasciitilde} / \text{\textasciitilde} \quad \text{PRE_CALC_MISS} = _F (\\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{CALC_MISS_OPTION} = / \text{'ISS'}, \quad \text{[TXM]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{CALC_MISS_OPTION} = / \text{'ISFS'}, \quad \text{[TXM]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{NMAX_MODE_ISS} = \text{nbiss}, \quad \text{[I]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{NMAX_MODE_IFS} = \text{nbifs}, \quad \text{[I]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{GROUP_MA_INTERF} = \text{grma_int}, \quad \text{[grma]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{GROUP_NO_CENT} = \text{grno_cent}, \quad \text{[grno]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{REDUC_DYNA_ISS} = / \text{'NOT'}, \quad \text{[DEFECT]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{REDUC_DYNA_ISS} = / \text{'YES'}, \quad \text{[TXM]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{REDUC_DYNA_IFS} = / \text{'NOT'}, \quad \text{[DEFECT]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{REDUC_DYNA_IFS} = / \text{'YES'}, \quad \text{[TXM]} \\
\text{\textasciitilde}),
\]

3.2.1 **Operand REDUC_DYNA_ISS/REDUC_DYNA_IFS**

These operands indicate the manner of representing the kinematics of the interfaces of ISS or YEWS by means of a base of static modes (REDUC_DYNA_* = ‘NOT’) or of the dynamic modes (REDUC_DYNA_* = ‘YES’).

3.2.2 **Operand NMAX_MODE_ISS/NMAX_MODE_IFS**

These operands make it possible to inform the number of modes to in the case of calculate a calculation of ISS or ISFS. If REDUC_DYNA_* = ‘YES’, the value of the keyword NMAX_MODE_* corresponding must be a multiple of 6.

3.2.3 **Operand GROUP_MA_INTERF**

This keyword, which is obligatory, makes it possible to inform the group of meshes corresponding to the dynamic interface to consider (together interface of ISFS or that of ISS or that of YEWS) for the calculation of the modes of interface.

3.2.4 **Operand GROUP_NO_CENT**

This keyword indicates the group of nodes defined in the center of an interface making it possible to consider a rigid behavior of this interface. If this keyword is indicated a condition of the type LIAISON_SOLIDE (cf. [U4.42.01]) must, a priori, being seized by means of the operand AFFE_CHAR_MECA (cf. §3.8).

3.2.5 **Operand CALC_MISS_OPTION**

This keyword indicates if calculation to be realized is of type ‘ISS’ or of type ‘ISFS’. The well informed value must thus be coherent with the other operands of PRE_CALC_MISS but also of the macro-order CALC_MISS (cf. [U7.03.12]).

3.3 **Operand POST_CALC_MISS**

\[
\text{\textasciitilde} / \text{\textasciitilde} \quad \text{POST_CALC_MISS} = _F (\\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{MACR_ELEM_DYNA} = \text{mael}, \quad \text{[macr_elem_dyna]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{GROUP_MA_INTERF} = \text{grma_int}, \quad \text{[grma]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{GROUP_NO_CENT} = \text{grno_cent}, \quad \text{[grno]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{UNIT_RESU_RIGI} = \text{uresrig}, \quad \text{[I]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{UNIT_RESU_AMOR} = \text{uresamo}, \quad \text{[I]} \\
\text{\textasciitilde} \text{\textasciitilde} \quad \text{UNIT_RESU_MAS} = \text{uresmas}, \quad \text{[I]} \\
\text{\textasciitilde}),
\]

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3.3.1 **Operand MACR_ELEM_DYNA**

This keyword expects as starter a concept of the type `macr_elem_dyna` who primarily corresponds to the impedance (frequential or temporal) to assemble with the digital model and who is obtained before with, for example, the sequence of the order `LIRE_IMPE_MISS` (cf. [U7.02.32]) and `MACR_ELEM_DYNA` (cf. [U4.65.01]).

3.3.2 **Operand GROUP_MA_INTERF**

This keyword same as that is used in § 3.2.3.

3.3.3 **Operand GROUP_NO_CENT**

This operand same as that is used in § 3.2.4. It is particularly important when a calculation with `STAT_DYNA` (cf. §3.4) must be carried out thereafter.

3.3.4 **Operand UNITE_RESU_RIGI/UNITE_RESU_AMOR/UNITE_RESU_MASS**

Numbers of logical unit of the files containing of the temporal impedances of ground (or its decomposition in terms of inertia, damping and rigidity) for the method Laplace-Time.

Operands `UNITE_RESU_RIGI`, `UNITE_RESU_AMOR`, `UNITE_RESU_MASS`, being of a use specific to the method Laplace-Time, are obligatory at the time a concept charges with type `LAPL_TEMPS` (cf. §3.1.3) is asked at exit of this macro-order.

3.4 **Operand STAT_DYNA**

\[/ \quad \text{STAT_DYNA} = _F (\]
\[\quad \text{RESULTAT} = \text{resu}, \quad \quad \quad \text{[evol_noli]} \]
\[\quad \text{EXCIT} = _F (\]
\[\quad \text{LOAD} = \text{tank}, \quad / \quad \text{[char_meca]} \]
\[\quad \quad / \quad \text{[char_cine_meca]} \]
\[\quad \quad / \quad \text{[fonction_sdaster]} \]
\[\quad \quad / \quad \text{[nappe_sdaster]} \]
\[\quad \quad / \quad \text{[formulA]} \]
\[\quad \text{FONC_MULT} = \text{fonct}, \quad / \quad \text{[fonction_sdaster]} \]
\[\quad \quad / \quad \text{[nappe_sdaster]} \]
\[\quad \quad / \quad \text{[formulA]} \]
\[\quad \text{TYPE_CHARGE} = / \quad \text{\`FIXE_CSTE'}, \quad / \quad \text{[DEFECT]} \]
\[\quad / \quad \text{\`FIXE_PILO'}, \quad / \quad \text{[TXM]} \]
\[\quad / \quad \text{\`SUIV'}, \quad / \quad \text{[TXM]} \]
\[\quad / \quad \text{\`DIDI'}, \quad / \quad \text{[TXM]} \]
\[) , \]
\[\quad \text{BEHAVIOR} = _F (\text{see the document \[U4.51.11\]}), \]
\[\quad \text{CONVERGENCE} = _F (\text{see the document \[U4.51.03\]}), \]
\[\quad \text{BASE_MODALE} = \text{bamo}, \quad \quad \quad \text{[mode_meca]} \]
\[\quad \text{UNITE_IMPE_TEMPS} = _F (\]
\[\quad \quad \text{UNITE_RESU_RIGI} = \text{uresrig}, \quad / \quad \text{[I]} \]
\[\quad \quad \text{UNITE_RESU_AMOR} = \text{uresamo}, \quad / \quad \text{[I]} \]
\[\quad \quad \text{UNITE_RESU_MASS} = \text{uresmas}, \quad / \quad \text{[I]} \]
\[) , \]
\[\quad \text{UNITE_IMPE_FREQ} = \text{uimpfr}, \quad / \quad \text{[I]} \]
\[\quad \text{FORCE_SOL} = \text{fsol}, \quad \quad \quad \text{[char_meca]} \]
\[\quad \quad \text{COEF_AMOR} = / \quad 0.0, \quad \quad \quad \text{[DEFECT]} \]
\[\quad \quad / \quad \text{coefamo}, \quad \quad \quad \text{[R]} \]
\[\quad \quad \text{NB_INST} = / \quad 100.0 \quad \quad \quad \text{[DEFECT]} \]
\[\quad \quad / \quad \text{nbinst}, \quad \quad \quad \text{[R]} \]
\[) , \]

3.4.1 **Operand RESULT**

This operand expects as starter a concept of the type `evol_noli` corresponding to the result of a static calculation.

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
In particular, within the framework of the method Laplace-Time when one seeks to carry out a non-linear seismic analysis with taking into account of the interaction ground-structure, the expected concept corresponds to that produced by the operator \texttt{STAT NON LINE} (\textit{cf.} [U4.51.03]).

3.4.2 Operand \texttt{EXCIT}
\textit{Cf.} [U4.51.03].

In practice and in the framework of the method Laplace-Time, the keyword \texttt{EXCIT} the whole waits of loads used for the non-linear calculation whose result is seized in \texttt{RESULT} (\textit{cf.} §3.4.1).

3.4.3 Operand \texttt{BEHAVIOR/CONVERGENCE}
\textit{Cf.} [U4.51.03]. Syntax is the same one as that of the keywords factor defined in the operator \texttt{STAT NON LINE} and it must be coherent with the result seized in \texttt{RESULT} (\textit{cf.} §3.4.1).

3.4.4 Operand \texttt{BASE MODALE}
This keyword expects as starter the modal base being used to project the impedances of ground. This base must be the same one as that used to project the impedances of ground indicated in \texttt{UNITE IMPE TEMPS} (\textit{cf.} §3.4.5) and \texttt{UNITE IMPE FREQ} (\textit{cf.} §3.4.6) in the form of logical units.

3.4.5 Operand \texttt{UNITE IMPE TEMPS}
The three keywords of this operand have the same meaning as in §3.3.4.

3.4.6 Operand \texttt{UNITE IMPE FREQ}
This keyword expects as starter the logical unit of the file containing the impedance of ground calculated in the frequential field.

3.4.7 Operand \texttt{FORCE SOL}
This keyword expects as starter a concept of load of the type ‘\texttt{LAPL TEMPS}’ (\textit{cf.} §3.1.3) such as created as a preliminary by the use of the keyword \texttt{POST CALC MISS} (\textit{cf.} §3.3).

3.4.8 Operand \texttt{COEF AMOR}
This keyword is a coefficient which makes it possible to control the value of viscous damping to add on the level of the interface ground-structure in the shape of discrete elements of type \texttt{DIS TR}. When \texttt{COEF AMOR} is worth 1.0, the value of damping which is assigned to the whole of the degrees of freedom of each discrete element is of 1.10^{16} N.s.m$^{-1}$.

3.4.9 Operand \texttt{NB INST}
This keyword expects as starter the number of steps of time necessaries to stabilize the transition statics-dynamics. The value by default is often sufficient.

3.5 Operand \texttt{AFFE MODELE}
Allows to define the modelled physical phenomenon (mechanical, thermal, acoustic) and the type of finite elements used. Syntax related to the keyword \texttt{AFFE MODELE} is the same one as that of the operator bearing the same name [U4.41.01]. Only one occurrence of this keyword is authorized.

3.6 Operand \texttt{AFFE MATERIAU}
Allows to assign materials to geometrical zones of a grid or a model. Syntax related to the keyword \texttt{AFFE MATERIAU} is the same one as that of the operator bearing the same name [U4.43.03]. The only difference relates to the operand \texttt{MODEL} who is not obligatory when \texttt{PRE CALC MISS} (\textit{cf.} §3.2) is present.

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3.7 **Operand **AFFE_CARA_ELEM

Allows to assign to elements of structure of the geometrical and material characteristics. Syntax related to the keyword **AFFE_CARA_ELEM** is the same one as that of the operator bearing the same name [U4.42.01]. The only difference relates to the operand **MODEL** who is not obligatory when **PRE_CALC_MISS** (cf. §3.2) is present.

Only one occurrence of this keyword is authorized.

3.8 **Operand **AFFE_CHAR_MECA

Allows to affect loadings and boundary conditions on a mechanical model. Syntax related to the keyword **AFFE_CHAR_MECA** is the same one as that of the operator bearing the same name [U4.44.01]. The only difference relates to the operand **MODEL** who is not obligatory at the time only **PRE_CALC_MISS** (cf. §3.2) is present.

Only one occurrence of this keyword is authorized.

3.9 **Operand **INFORMATION

Allows to control the level of message of the macro-order.