Operator CALC_FORC_NONL

1. Goal

To create a new result of complementary nodal forces to use in the operators DYNA_LINE_HARM and DYNA_LINE_TRAN under the keyword EXCIT_RESU.
2 Syntax

```plaintext
resu [dyna_trans] = CALC_FORC_NONL

(  ♦ RESULT = resu, [dyna_trans]
  ♦ OPTION = 'FONL_NOEU', [DEFECT]
  ♦ MODEL = model, [model]
  ♦ CHAM_MATER = chmater, [cham_mater]
  ♦ CARA_ELEM = carac, [cara_elem]
  ♦ BEHAVIOR = F {
      ♦ RELATION =/cf relations [U4.51.11]
        ♦ DEFORMATION =/ 'SMALL', [DEFECT]
        ♦ / 'PETIT_REAC',
        ♦ / 'SIMO_MIEHE',
        ♦ / ALL = 'YES', [DEFECT]
        ♦ / | GROUP_MA = lgrma, [l_gr_maille]
          ♦ | MESH = lma, [l_maille]
      },
      ♦ / TOUT_ORDRE = 'YES', [DEFECT]
      ♦ / NUME_ORDRE = l_numo, [I]
      ♦ / LIST_ORDRE = l_ordr, [listis]
      ♦ / NOEUD_CMP = l_mode, [KN]
      ♦ / NUME_MODE = l_numo, [I]
      ♦ / NOM_CAS = nomcas, [KN]
      ♦ / INST = l_inst, [I]
      ♦ / LIST_INST = l_inst, [listr8]
      ♦ / FREQ = l_freq, [I]
      ♦ / LIST_FREQ = l_freq, [listr8]
      ♦ / CRITERION = 'RELATIVE', [DEFECT]
        ♦ PRECISION = / prec, [R]
        ♦ / 1.0D-6, [DEFECT]
      ♦ / CRITERION = 'ABSOLUTE',
        ♦ PRECISION = prec, [R]
  )
```

Warning: The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
3 Operands

3.1 Operands TOUT_ORDRE / NUME_ORDRE / LIST_ORDRE / NUME_MODE/
NOEUD_CMP / NOM_CAS / INST / LIST_INST / FREQ / LIST_FREQ /
PRECISION / CRITERION

See [U4.71.00] for the description of these operands.

3.2 Operand OPTION: ‘FONL_NOEU’

◊ OPTION = ' FONL_NOEU'

Option of calculation of the complement of internal forces due to nonthe lineairities of behavior. This option relates to the laws of behavior where the internal forces depend primarily on the fields kinematics (displacements, speeds, accelerations); it thus relates to especially nonthe lineairities located such as for example the contact penalized between discrete elements. The terms calculated with the nodes are obtained by the difference between the integrated residue in internal forces (depending at the same time on the fields kinematics and the parameters of law of behavior) and the internal force which would be obtained starting from the same fields kinematics by considering a linear behavior for the structure.

Notice 1:

In the precise case of the calculation of this option, the name of the concept result created of type dyna_trans is obligatorily different from the name of concept result of the type dyna_trans used as starter under the operand RESULT and an evolution of fields of the type constitutes ‘DEPL’. This new result of complementary nodal forces is used under the keyword EXCIT_RESU in the operators DYNA_LINE_HARM or DYNA_VIBRA and TYPE_RESU=’HARM’ (in this case after transformation by the operator REST_SPEC_TEMP [U4.63.34]) and DYNA_LINE_TRAN or DYNA_VIBRA and TYPE_RESU=’TRAN’. An example is provided in the case test SDLS119A.

Notice 2:

In the precise case of the calculation of the option ‘FONL_NOEU’ with the relation ‘DIS_CHOC’ assigned to discrete elements, It is then necessary always to direct the discrete element of contact in the direction structure towards thrust. That it is with elements POI1, like always by the keyword ORIENTATION of AFFE_CARAELEM, but also with elements SEG2 where one must define well the element in the direction structure candidate in the contact, associated with node 1, towards the thrust, associated with node 2.

3.2.1 Operand MODEL

◊ MODEL = Mo,

Name of the model, necessary to enter, on which is calculated the option ‘FONL_NOEU’.

3.2.2 Operand CHAM_MATER

◊ CHAM_MATER = chmater,
Name of the material field where the material characteristics of the elements are defined. This argument is necessary for the calculation of the option 'FONL_NOEU' because laws of behavior defined in the keywords BEHAVIOR always require a material field.

3.2.3 Operand CARA_ELEM

◊ CARA_ELEM = carac,

The concept of the elementary characteristics of type cara_elem is necessary for the calculation of the option 'FONL_NOEU' if there exists in the model of the elements of structure.

3.2.4 Operand BEHAVIOR

◊ BEHAVIOR = _F

Keyword factor allowing to assign laws of behavior to meshes or groups of meshes of the grid.

One defines an assignment by occurrence of the keyword BEHAVIOR.

3.2.4.1 Operand RELATION

◊ RELATION,

Name of a relation of law of behavior under format text. The allowed relations are those where the internal forces depend primarily on the fields kinematics (displacements, speeds, accelerations); in addition to the relation 'ELAS', the first relation planned for the option 'FONL_NOEU' is the relation 'DIS_CHOC' assigned to discrete elements.

3.2.4.2 Operand DEFORMATION

◊ DEFORMATION,

Name of the type of deformation under format text compatible with the type of the elements affected by the law of behavior.

3.2.4.3 Operands TOUT/GROUP_MA/MAILLE

◊ ALL = 'YES',

The relation is affected on all the grid.

◊ GROUP_MA = lgma,

The relation is affected on the groups of meshes contained in the list lgma.

◊ MESH = lma,

The relation is affected on the meshes contained in the list lma.