Operator **POST_MAC3COEUR**

1 Goal

Macro-order dedicated to the postprocessing of `CALC_MAC3COEUR`. This operator allows:

- to visualize the cards of water blades in an engine on the level of the grids
- to visualize the cards of deformations in an engine on the level of the grids (amplitude, module, orientation) or in the form of a table similar to a statement DAMAC.
- to visualize the deformation of a particular assembly in the engine.
2 Syntax

table = POST_MAC3COEUR
 ♦ TYPE_COEUR = / 'MONO',
 ♦ / 'MONO_COLD',
 ♦ / 'TEST',
 ♦ / '900',
 ♦ / '1300',
 ♦ / 'N4',
 ♦ / 'LINE900',
 ♦ / 'LINE1300',
 ♦ / 'LINEN4',
 If TYPE_COEUR is of type 'LINE'
 ♦ / 'NB_ASMENBLAGE = nbass
 ♦ RESULT = resu
 ♦ TABLE = table
 ♦ INST = I
 ♦ BLADE = F (
 ♦ FORMA'T = / 'GRACE'
 ♦ / 'TABLE'
 ♦ UNIT = ul
 ♦ # if FORMAT='GRACE'
 ♦ / NUME_GRILLE= ng
 ♦ / TYPE_RESU = / 'MINI',
 ♦ / 'MAXIMUM',
 ♦),
 ♦ DEFORMATION = F (
 ♦ FORMAT = / 'GRACE'
 ♦ / 'TABLE'
 ♦ UNIT = ul
 ♦ # if FORMAT='GRACE'
 ♦ / NUME_GRILLE= ng
 ♦ / TYPE_RESU = / 'MINI',
 ♦ / 'MAXIMUM',
 ♦ / POSITION = pos
 ♦ / TYPE_VISU = / 'AMPLITUDE'
 ♦ / 'MODULE'
 ♦ / 'VECTOR'
 ♦ / 'DEFORMS'
 ♦ DESIGN = concept
 ♦ # or if FORMAT='TABLE'
 ♦ / NOM_SITE = 'TXT'
 ♦ / FORMAT_R = / 'DAMAC',
 ♦ / 'STANDARD',
 ♦ # finsi
),
)
POST_MAC3COEUR turn over an object of the type `table_sdaster`.
3 Operands

3.1 Operand TYPE_COEUR

Name of the type of heart to be treated. See [u4.90.11] CALC_MAC3COEUR.

3.2 Operand NB_ASSEMBLAGE

In the case of a heart of the type 'LIGNEXXX' (with XXX=' 900 ', '1300' or 'N4'), allows to specify the length of the line.

3.3 Operand RESULT

Name of the structure of data result post-to treat.

3.4 Operand TABLE

Table (with format DAMAC) containing the information of the assemblies.

3.5 Operand INST

Moment of desired postprocessing. Only one possible moment at the same time.

3.6 Operand BLADE

Keyword factor which specifies that the macro-order is used here post-to treat the water blades of the structure of data RESULT.

The table of exit contains the following parameters: quantile with 70%, 80%, 90%, 95%, 99%

3.6.1 Operand UNIT

Number of the logical unit for the writing of the result.

3.6.2 Operand FORMAT

Two exits of possible postprocessing. That is to say an exit in the form of TABLE with the format text, that is to say a digital exit of visualization to the format GRACE.

3.6.3 Operands specific to the format GRACE

3.6.3.1 Operand NUME_GRILLE

Number of the grid post-to be treated for all the assemblies of the engine (conventionally going number of bottom upwards in the axial direction of the assembly).

Notice: Operand which excluded the call to TYPE_RESU.

3.6.3.2 Operand TYPE_RESU

Type of result post-to treat. If 'MINIS' one recovers allowance between each assembly, if 'MAXIMUM' one recovers the maximum clearance.

Notice: Operand which excluded the call to NUME_GRILLE.
3.7 Operand DEFORMATION

Keyword factor which specifies that postprocessing relates to the analysis of the deformation of the assemblies in the engine.

Note: the deformations of which it is question are not identical to displacements (components DX, DY and DZ field of displacement) but are calculated starting from the arrows according to the convention of statements DAMAC.

For recall, the arrow with altitude h is defined by the following formula:

$$\text{flèche}(h) = \text{depl}(h) - \text{corde}(h)$$

where $\text{depl}(h)$ is the displacement obtained by Code_Aster with altitude h and $\text{corde}(h) = \frac{\text{depl}(h_{\text{sup}}) - \text{depl}(h_{\text{inf}})}{h_{\text{sup}} - h_{\text{inf}}}(h - h_{\text{inf}})$

h_{sup} et h_{inf} the higher altitude of the assembly and the lower altitude of the assembly represent respectively.

The arrows are broken up along the 2 side axes X and Y (convention DAMAC).

Attention, in Code_Aster, the side axes are Y and Z. In the continuation, one refers to conventions DAMAC.

The noted parameter Ro is also calculated according to the formula of statements DAMAC starting from the side arrows on the level of each grid:

$$Ro = \max_{(i, j)\in[1, nb\text{grilles}]} \sqrt{(\text{flèche}_X(i) - \text{flèche}_X(j))^2 + (\text{flèche}_Y(i) - \text{flèche}_Y(j))^2}$$

This parameter Ro is not equivalent to the module of the arrow:

$$\max_{i\in[1, nb\text{grilles}]} \sqrt{\text{flèche}_X(i)^2 + \text{flèche}_Y(i)^2}$$

The table of exit contains the following parameters: average of Ro on heart, average of Ro by type of assembly, max of Ro on heart, max of Ro by type, average "gravity" of the heart, max of "gravity" of the heart, standard deviation of "gravity", gravity max by type, max of displacement by grid, as well as the localizations (assembly) for the differences max (Ro, revolves, displacement of grid).

3.7.1 Operand UNIT

Number of the logical unit for the writing of the result.

3.7.2 Operand FORMAT

Two exits of possible postprocessing. That is to say an exit in the form of TABLE with the format text, that is to say a digital exit of visualization to the format GRACE.

3.7.2.1 Format GRACE

For the format GRACE, the operands treated are: NUME_GRILLE, TYPE_RESU, NUME_GRILLE, POSITION and DESIGN.

3.7.2.2 Format TABLE

For the format TABLE, there is only the operand NOM_SITE to inform.
The table of exit is written in a form identical to that of a statement DAMAC:
– each line corresponds to a position of assembly
– the columns are the following ones:
 1: NOM AC : name of the position (denomination DAMAC),
 2: Cycle : always 1 for the moment
 3: Reference mark : nonwell informed for the moment
 4: Ro : arrow max,
 5-14: deformation (marks with arrows) along the axis X for each grid,
 15-24: deformation (marks with arrows) along the axis Y for each grid
 25: Medium : nonwell informed for the moment
 26: Min X : minimum of displacements according to X
 27: Max X : maximum of displacements according to X
 28: DC X : peak displacement with peak according to X
 29: Min Y : minimum of displacements according to Y
 30: Max Y : maximum of displacements according to Y
 31: DC Y : peak displacement with peak according to Y
 32: Form X : Form ("It or ") according to X
 33: Form Y : Form ("It or ") according to Y
 34: Form : Combined form ("2C", "2S" or "CS")

Remarks on the format of the table: the table is written to be read again by the Damac30a.exe software under Windows. For that, the character of end of line is \R\. The character used as separating of value is the Tabulation \ you. The heading of the table comprises the 5 following lines:
– 1st line: vacuum
– 2nd line: 80 indents
– 3rd line: vacuum
– 4th line: the type of heart (N4, 900.1300...)
– 5th line: the name of the site (cf operand NOM_SITE)

In order to be read again by the Damac30a.exe software under Windows, it is necessary to remove the first 3 lines of this table.

3.7.3 Operands specific to the format GRACE

3.7.3.1 Operand NUME_GRILLE

Number of the grid post-to be treated for all the assemblies of the engine (conventionally going number of bottom upwards in the axial direction of the assembly).

Notice : Operand which excluded the call to TYPE_RESU.

3.7.3.2 Operand TYPE_RESU

Type of result post-to treat. If 'MINIS' one recovers allowance between each assembly, if 'MAXIMUM' one recovers the maximum clearance.

Notice : Operand which excluded the call to NUME_GRILLE.

3.7.3.3 Operand TYPE_VISU

The postprocessing required at the level of engine door is on the amplitude ('AMPLITUDE') deformations of the assemblies, is on their module ('MODULE'), that is to say on their direction ('VECTOR').

It is also possible post-to treat the deformation ('DEFORM') of a particular assembly in the heart.

3.7.3.4 Operand POSITION

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.
Copyright 2020 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)
This operand is necessary if the choice of postprocessing is of TYPE_VISU = 'DEFORM'. It makes it possible to define the position of the assembly in the engine which one wishes post-to treat.

3.7.3.5 **Operand DESIGN**

This operand is necessary if the choice of postprocessing is of TYPE_VISU = 'DEFORM'. It makes it possible to specify the type of design of the assembly in the engine which one wishes post-to treat. It is necessary for the recovery of the geometrical properties of the assembly.

3.7.4 **Operand specific to the format TABLE**

3.7.4.1 **Operand NOM_SITE**

Text which identifies the name of the site (by ex: ‘CHO101’). This information is used only for the Damac30a.exe software.

One can put what one wants.

3.7.4.2 **Operand FORMAT_R**

Allows to choose the format of impression of realities in the table of exit.

With the format DAMAC (the defect), one prints with 1 decimal.

With the format STANDARD, one uses 5 decimals.